Metamath Proof Explorer
Description: An equality inference for the maps-to notation. (Contributed by Mario
Carneiro, 16-Dec-2013) (Proof shortened by SN, 11-Nov-2024)
|
|
Ref |
Expression |
|
Hypothesis |
mpteq2ia.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐶 ) |
|
Assertion |
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpteq2ia.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐶 ) |
2 |
1
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) |
3 |
2
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
4 |
3
|
mptru |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |