Metamath Proof Explorer


Theorem mpteq2ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq2ia.1 ( 𝑥𝐴𝐵 = 𝐶 )
Assertion mpteq2ia ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 mpteq2ia.1 ( 𝑥𝐴𝐵 = 𝐶 )
2 1 adantl ( ( ⊤ ∧ 𝑥𝐴 ) → 𝐵 = 𝐶 )
3 2 mpteq2dva ( ⊤ → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )
4 3 mptru ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 )