Metamath Proof Explorer


Theorem mpteq2iaOLD

Description: Obsolete version of mpteq2ia as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpteq2ia.1
|- ( x e. A -> B = C )
Assertion mpteq2iaOLD
|- ( x e. A |-> B ) = ( x e. A |-> C )

Proof

Step Hyp Ref Expression
1 mpteq2ia.1
 |-  ( x e. A -> B = C )
2 eqid
 |-  A = A
3 2 ax-gen
 |-  A. x A = A
4 1 rgen
 |-  A. x e. A B = C
5 mpteq12f
 |-  ( ( A. x A = A /\ A. x e. A B = C ) -> ( x e. A |-> B ) = ( x e. A |-> C ) )
6 3 4 5 mp2an
 |-  ( x e. A |-> B ) = ( x e. A |-> C )