Step |
Hyp |
Ref |
Expression |
1 |
|
cnmetdval.1 |
|- D = ( abs o. - ) |
2 |
|
subf |
|- - : ( CC X. CC ) --> CC |
3 |
|
opelxpi |
|- ( ( A e. CC /\ B e. CC ) -> <. A , B >. e. ( CC X. CC ) ) |
4 |
|
fvco3 |
|- ( ( - : ( CC X. CC ) --> CC /\ <. A , B >. e. ( CC X. CC ) ) -> ( ( abs o. - ) ` <. A , B >. ) = ( abs ` ( - ` <. A , B >. ) ) ) |
5 |
2 3 4
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs o. - ) ` <. A , B >. ) = ( abs ` ( - ` <. A , B >. ) ) ) |
6 |
|
df-ov |
|- ( A D B ) = ( D ` <. A , B >. ) |
7 |
1
|
fveq1i |
|- ( D ` <. A , B >. ) = ( ( abs o. - ) ` <. A , B >. ) |
8 |
6 7
|
eqtri |
|- ( A D B ) = ( ( abs o. - ) ` <. A , B >. ) |
9 |
|
df-ov |
|- ( A - B ) = ( - ` <. A , B >. ) |
10 |
9
|
fveq2i |
|- ( abs ` ( A - B ) ) = ( abs ` ( - ` <. A , B >. ) ) |
11 |
5 8 10
|
3eqtr4g |
|- ( ( A e. CC /\ B e. CC ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |