Metamath Proof Explorer


Theorem cnmetdval

Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypothesis cnmetdval.1 𝐷 = ( abs ∘ − )
Assertion cnmetdval ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cnmetdval.1 𝐷 = ( abs ∘ − )
2 subf − : ( ℂ × ℂ ) ⟶ ℂ
3 opelxpi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ℂ × ℂ ) )
4 fvco3 ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ( abs ‘ ( − ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
5 2 3 4 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ∘ − ) ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ( abs ‘ ( − ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
6 df-ov ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
7 1 fveq1i ( 𝐷 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ( ( abs ∘ − ) ‘ ⟨ 𝐴 , 𝐵 ⟩ )
8 6 7 eqtri ( 𝐴 𝐷 𝐵 ) = ( ( abs ∘ − ) ‘ ⟨ 𝐴 , 𝐵 ⟩ )
9 df-ov ( 𝐴𝐵 ) = ( − ‘ ⟨ 𝐴 , 𝐵 ⟩ )
10 9 fveq2i ( abs ‘ ( 𝐴𝐵 ) ) = ( abs ‘ ( − ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
11 5 8 10 3eqtr4g ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴𝐵 ) ) )