Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feqmptd
Next ⟩
feqresmpt
Metamath Proof Explorer
Ascii
Unicode
Theorem
feqmptd
Description:
Deduction form of
dffn5
.
(Contributed by
Mario Carneiro
, 8-Jan-2015)
Ref
Expression
Hypothesis
feqmptd.1
⊢
φ
→
F
:
A
⟶
B
Assertion
feqmptd
⊢
φ
→
F
=
x
∈
A
⟼
F
⁡
x
Proof
Step
Hyp
Ref
Expression
1
feqmptd.1
⊢
φ
→
F
:
A
⟶
B
2
1
ffnd
⊢
φ
→
F
Fn
A
3
dffn5
⊢
F
Fn
A
↔
F
=
x
∈
A
⟼
F
⁡
x
4
2
3
sylib
⊢
φ
→
F
=
x
∈
A
⟼
F
⁡
x