Metamath Proof Explorer


Theorem feqmptd

Description: Deduction form of dffn5 . (Contributed by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypothesis feqmptd.1 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion feqmptd ( 𝜑𝐹 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 feqmptd.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 1 ffnd ( 𝜑𝐹 Fn 𝐴 )
3 dffn5 ( 𝐹 Fn 𝐴𝐹 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) )
4 2 3 sylib ( 𝜑𝐹 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) )