Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | feqmptd.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| feqresmpt.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| Assertion | feqresmpt | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | feqresmpt.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | 1 2 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 4 | 3 | feqmptd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) |
| 5 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | 5 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 7 | 4 6 | eqtrdi | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |