Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | feqmptd.1 | |- ( ph -> F : A --> B ) |
|
feqresmpt.2 | |- ( ph -> C C_ A ) |
||
Assertion | feqresmpt | |- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | |- ( ph -> F : A --> B ) |
|
2 | feqresmpt.2 | |- ( ph -> C C_ A ) |
|
3 | 1 2 | fssresd | |- ( ph -> ( F |` C ) : C --> B ) |
4 | 3 | feqmptd | |- ( ph -> ( F |` C ) = ( x e. C |-> ( ( F |` C ) ` x ) ) ) |
5 | fvres | |- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
|
6 | 5 | mpteq2ia | |- ( x e. C |-> ( ( F |` C ) ` x ) ) = ( x e. C |-> ( F ` x ) ) |
7 | 4 6 | eqtrdi | |- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) ) |