Metamath Proof Explorer


Theorem feqresmpt

Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses feqmptd.1
|- ( ph -> F : A --> B )
feqresmpt.2
|- ( ph -> C C_ A )
Assertion feqresmpt
|- ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) )

Proof

Step Hyp Ref Expression
1 feqmptd.1
 |-  ( ph -> F : A --> B )
2 feqresmpt.2
 |-  ( ph -> C C_ A )
3 1 2 fssresd
 |-  ( ph -> ( F |` C ) : C --> B )
4 3 feqmptd
 |-  ( ph -> ( F |` C ) = ( x e. C |-> ( ( F |` C ) ` x ) ) )
5 fvres
 |-  ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) )
6 5 mpteq2ia
 |-  ( x e. C |-> ( ( F |` C ) ` x ) ) = ( x e. C |-> ( F ` x ) )
7 4 6 eqtrdi
 |-  ( ph -> ( F |` C ) = ( x e. C |-> ( F ` x ) ) )