Metamath Proof Explorer


Theorem nmfval

Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nmfval.n N=normW
nmfval.x X=BaseW
nmfval.z 0˙=0W
nmfval.d D=distW
Assertion nmfval N=xXxD0˙

Proof

Step Hyp Ref Expression
1 nmfval.n N=normW
2 nmfval.x X=BaseW
3 nmfval.z 0˙=0W
4 nmfval.d D=distW
5 fveq2 w=WBasew=BaseW
6 5 2 eqtr4di w=WBasew=X
7 fveq2 w=Wdistw=distW
8 7 4 eqtr4di w=Wdistw=D
9 eqidd w=Wx=x
10 fveq2 w=W0w=0W
11 10 3 eqtr4di w=W0w=0˙
12 8 9 11 oveq123d w=Wxdistw0w=xD0˙
13 6 12 mpteq12dv w=WxBasewxdistw0w=xXxD0˙
14 df-nm norm=wVxBasewxdistw0w
15 eqid xXxD0˙=xXxD0˙
16 df-ov xD0˙=Dx0˙
17 fvrn0 Dx0˙ranD
18 16 17 eqeltri xD0˙ranD
19 18 a1i xXxD0˙ranD
20 15 19 fmpti xXxD0˙:XranD
21 2 fvexi XV
22 4 fvexi DV
23 22 rnex ranDV
24 p0ex V
25 23 24 unex ranDV
26 fex2 xXxD0˙:XranDXVranDVxXxD0˙V
27 20 21 25 26 mp3an xXxD0˙V
28 13 14 27 fvmpt WVnormW=xXxD0˙
29 fvprc ¬WVnormW=
30 mpt0 xxD0˙=
31 29 30 eqtr4di ¬WVnormW=xxD0˙
32 fvprc ¬WVBaseW=
33 2 32 eqtrid ¬WVX=
34 33 mpteq1d ¬WVxXxD0˙=xxD0˙
35 31 34 eqtr4d ¬WVnormW=xXxD0˙
36 28 35 pm2.61i normW=xXxD0˙
37 1 36 eqtri N=xXxD0˙