Metamath Proof Explorer


Theorem fvrn0

Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011) (Revised by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion fvrn0 FXranF

Proof

Step Hyp Ref Expression
1 id FX=FX=
2 ssun2 ranF
3 0ex V
4 3 snid
5 2 4 sselii ranF
6 1 5 eqeltrdi FX=FXranF
7 ssun1 ranFranF
8 fvprc ¬XVFX=
9 8 con1i ¬FX=XV
10 fvexd ¬FX=FXV
11 fvbr0 XFFXFX=
12 11 ori ¬XFFXFX=
13 12 con1i ¬FX=XFFX
14 brelrng XVFXVXFFXFXranF
15 9 10 13 14 syl3anc ¬FX=FXranF
16 7 15 sselid ¬FX=FXranF
17 6 16 pm2.61i FXranF