Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - add the Axiom of Power Sets  
				Functions  
				fvn0fvelrn  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   If the value of a function is not null, the value is an element of the
     range of the function.  (Contributed by Alexander van der Vekens , 22-Jul-2018)   (Proof shortened by SN , 13-Jan-2025) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					fvn0fvelrn  
					   ⊢    F  ⁡  X     ≠  ∅    →    F  ⁡  X     ∈   ran  ⁡  F           
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							fvrn0  
							   ⊢    F  ⁡  X     ∈    ran  ⁡  F    ∪   ∅              
						 
						
							2  
							
								
							 
							nelsn  
							    ⊢    F  ⁡  X     ≠  ∅    →   ¬    F  ⁡  X     ∈   ∅             
						 
						
							3  
							
								
							 
							elunnel2  
							    ⊢     F  ⁡  X     ∈    ran  ⁡  F    ∪   ∅         ∧   ¬    F  ⁡  X     ∈   ∅           →    F  ⁡  X     ∈   ran  ⁡  F           
						 
						
							4  
							
								1  2  3 
							 
							sylancr  
							    ⊢    F  ⁡  X     ≠  ∅    →    F  ⁡  X     ∈   ran  ⁡  F