Metamath Proof Explorer


Theorem fvn0fvelrn

Description: If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion fvn0fvelrn
|- ( ( F ` X ) =/= (/) -> ( F ` X ) e. ran F )

Proof

Step Hyp Ref Expression
1 fvfundmfvn0
 |-  ( ( F ` X ) =/= (/) -> ( X e. dom F /\ Fun ( F |` { X } ) ) )
2 eldmressnsn
 |-  ( X e. dom F -> X e. dom ( F |` { X } ) )
3 fvelrn
 |-  ( ( Fun ( F |` { X } ) /\ X e. dom ( F |` { X } ) ) -> ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) )
4 pm3.2
 |-  ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) )
5 3 4 syl
 |-  ( ( Fun ( F |` { X } ) /\ X e. dom ( F |` { X } ) ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) )
6 5 ex
 |-  ( Fun ( F |` { X } ) -> ( X e. dom ( F |` { X } ) -> ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) )
7 6 com13
 |-  ( X e. dom F -> ( X e. dom ( F |` { X } ) -> ( Fun ( F |` { X } ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) ) )
8 2 7 mpd
 |-  ( X e. dom F -> ( Fun ( F |` { X } ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) ) )
9 8 imp
 |-  ( ( X e. dom F /\ Fun ( F |` { X } ) ) -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) )
10 fvressn
 |-  ( X e. dom F -> ( ( F |` { X } ) ` X ) = ( F ` X ) )
11 10 eleq1d
 |-  ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) <-> ( F ` X ) e. ran ( F |` { X } ) ) )
12 fvrnressn
 |-  ( X e. dom F -> ( ( F ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) )
13 11 12 sylbid
 |-  ( X e. dom F -> ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) -> ( F ` X ) e. ran F ) )
14 13 impcom
 |-  ( ( ( ( F |` { X } ) ` X ) e. ran ( F |` { X } ) /\ X e. dom F ) -> ( F ` X ) e. ran F )
15 1 9 14 3syl
 |-  ( ( F ` X ) =/= (/) -> ( F ` X ) e. ran F )