Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
2 |
|
ssun2 |
⊢ { ∅ } ⊆ ( ran 𝐹 ∪ { ∅ } ) |
3 |
|
0ex |
⊢ ∅ ∈ V |
4 |
3
|
snid |
⊢ ∅ ∈ { ∅ } |
5 |
2 4
|
sselii |
⊢ ∅ ∈ ( ran 𝐹 ∪ { ∅ } ) |
6 |
1 5
|
eqeltrdi |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐹 ‘ 𝑋 ) ∈ ( ran 𝐹 ∪ { ∅ } ) ) |
7 |
|
ssun1 |
⊢ ran 𝐹 ⊆ ( ran 𝐹 ∪ { ∅ } ) |
8 |
|
fvprc |
⊢ ( ¬ 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
9 |
8
|
con1i |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ∅ → 𝑋 ∈ V ) |
10 |
|
fvexd |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐹 ‘ 𝑋 ) ∈ V ) |
11 |
|
fvbr0 |
⊢ ( 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) ∨ ( 𝐹 ‘ 𝑋 ) = ∅ ) |
12 |
11
|
ori |
⊢ ( ¬ 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑋 ) = ∅ ) |
13 |
12
|
con1i |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ∅ → 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) ) |
14 |
|
brelrng |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝐹 ‘ 𝑋 ) ∈ V ∧ 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) |
15 |
9 10 13 14
|
syl3anc |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐹 ‘ 𝑋 ) ∈ ran 𝐹 ) |
16 |
7 15
|
sselid |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ∅ → ( 𝐹 ‘ 𝑋 ) ∈ ( ran 𝐹 ∪ { ∅ } ) ) |
17 |
6 16
|
pm2.61i |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ ( ran 𝐹 ∪ { ∅ } ) |