| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							⊢ ( ( 𝐹 ‘ 𝑋 )  =  ∅  →  ( 𝐹 ‘ 𝑋 )  =  ∅ )  | 
						
						
							| 2 | 
							
								
							 | 
							ssun2 | 
							⊢ { ∅ }  ⊆  ( ran  𝐹  ∪  { ∅ } )  | 
						
						
							| 3 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 4 | 
							
								3
							 | 
							snid | 
							⊢ ∅  ∈  { ∅ }  | 
						
						
							| 5 | 
							
								2 4
							 | 
							sselii | 
							⊢ ∅  ∈  ( ran  𝐹  ∪  { ∅ } )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							eqeltrdi | 
							⊢ ( ( 𝐹 ‘ 𝑋 )  =  ∅  →  ( 𝐹 ‘ 𝑋 )  ∈  ( ran  𝐹  ∪  { ∅ } ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ssun1 | 
							⊢ ran  𝐹  ⊆  ( ran  𝐹  ∪  { ∅ } )  | 
						
						
							| 8 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑋  ∈  V  →  ( 𝐹 ‘ 𝑋 )  =  ∅ )  | 
						
						
							| 9 | 
							
								8
							 | 
							con1i | 
							⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ∅  →  𝑋  ∈  V )  | 
						
						
							| 10 | 
							
								
							 | 
							fvexd | 
							⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ∅  →  ( 𝐹 ‘ 𝑋 )  ∈  V )  | 
						
						
							| 11 | 
							
								
							 | 
							fvbr0 | 
							⊢ ( 𝑋 𝐹 ( 𝐹 ‘ 𝑋 )  ∨  ( 𝐹 ‘ 𝑋 )  =  ∅ )  | 
						
						
							| 12 | 
							
								11
							 | 
							ori | 
							⊢ ( ¬  𝑋 𝐹 ( 𝐹 ‘ 𝑋 )  →  ( 𝐹 ‘ 𝑋 )  =  ∅ )  | 
						
						
							| 13 | 
							
								12
							 | 
							con1i | 
							⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ∅  →  𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							brelrng | 
							⊢ ( ( 𝑋  ∈  V  ∧  ( 𝐹 ‘ 𝑋 )  ∈  V  ∧  𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 )  | 
						
						
							| 15 | 
							
								9 10 13 14
							 | 
							syl3anc | 
							⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ∅  →  ( 𝐹 ‘ 𝑋 )  ∈  ran  𝐹 )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							sselid | 
							⊢ ( ¬  ( 𝐹 ‘ 𝑋 )  =  ∅  →  ( 𝐹 ‘ 𝑋 )  ∈  ( ran  𝐹  ∪  { ∅ } ) )  | 
						
						
							| 17 | 
							
								6 16
							 | 
							pm2.61i | 
							⊢ ( 𝐹 ‘ 𝑋 )  ∈  ( ran  𝐹  ∪  { ∅ } )  |