Metamath Proof Explorer


Theorem sselii

Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999)

Ref Expression
Hypotheses sseli.1 A B
sselii.2 C A
Assertion sselii C B

Proof

Step Hyp Ref Expression
1 sseli.1 A B
2 sselii.2 C A
3 1 sseli C A C B
4 2 3 ax-mp C B