Metamath Proof Explorer


Theorem mpt0

Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion mpt0 xA=

Proof

Step Hyp Ref Expression
1 ral0 xAV
2 eqid xA=xA
3 2 fnmpt xAVxAFn
4 1 3 ax-mp xAFn
5 fn0 xAFnxA=
6 4 5 mpbi xA=