Metamath Proof Explorer


Theorem cnvoprab

Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017) (Proof shortened by Thierry Arnoux, 20-Feb-2022)

Ref Expression
Hypotheses cnvoprab.1 a=xyψφ
cnvoprab.2 ψaV×V
Assertion cnvoprab xyz|φ-1=za|ψ

Proof

Step Hyp Ref Expression
1 cnvoprab.1 a=xyψφ
2 cnvoprab.2 ψaV×V
3 1 dfoprab3 az|aV×Vψ=xyz|φ
4 3 cnveqi az|aV×Vψ-1=xyz|φ-1
5 cnvopab az|aV×Vψ-1=za|aV×Vψ
6 inopab za|aV×Vza|ψ=za|aV×Vψ
7 2 ssopab2i za|ψza|aV×V
8 sseqin2 za|ψza|aV×Vza|aV×Vza|ψ=za|ψ
9 7 8 mpbi za|aV×Vza|ψ=za|ψ
10 5 6 9 3eqtr2i az|aV×Vψ-1=za|ψ
11 4 10 eqtr3i xyz|φ-1=za|ψ