Metamath Proof Explorer


Theorem cnvsymOLD

Description: Obsolete proof of cnvsym as of 29-Dec-2024. (Contributed by NM, 28-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by SN, 23-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnvsymOLD R-1RxyxRyyRx

Proof

Step Hyp Ref Expression
1 relcnv RelR-1
2 ssrel3 RelR-1R-1RyxyR-1xyRx
3 1 2 ax-mp R-1RyxyR-1xyRx
4 alcom yxyR-1xyRxxyyR-1xyRx
5 vex yV
6 vex xV
7 5 6 brcnv yR-1xxRy
8 7 imbi1i yR-1xyRxxRyyRx
9 8 2albii xyyR-1xyRxxyxRyyRx
10 3 4 9 3bitri R-1RxyxRyyRx