Metamath Proof Explorer


Theorem cnvtrucl0

Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020)

Ref Expression
Assertion cnvtrucl0 X V x | X x -1 = y | X -1 y

Proof

Step Hyp Ref Expression
1 idd X V x = y -1 X X -1 -1
2 idd X V y = x -1
3 biidd x = X
4 ssidd X V X X
5 elex X V X V
6 trud X V
7 1 2 3 4 5 6 clcnvlem X V x | X x -1 = y | X -1 y