Metamath Proof Explorer


Theorem cnvtrucl0

Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020)

Ref Expression
Assertion cnvtrucl0
|- ( X e. V -> `' |^| { x | ( X C_ x /\ T. ) } = |^| { y | ( `' X C_ y /\ T. ) } )

Proof

Step Hyp Ref Expression
1 idd
 |-  ( ( X e. V /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( T. -> T. ) )
2 idd
 |-  ( ( X e. V /\ y = `' x ) -> ( T. -> T. ) )
3 biidd
 |-  ( x = X -> ( T. <-> T. ) )
4 ssidd
 |-  ( X e. V -> X C_ X )
5 elex
 |-  ( X e. V -> X e. _V )
6 trud
 |-  ( X e. V -> T. )
7 1 2 3 4 5 6 clcnvlem
 |-  ( X e. V -> `' |^| { x | ( X C_ x /\ T. ) } = |^| { y | ( `' X C_ y /\ T. ) } )