Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvtrucl0 | |- ( X e. V -> `' |^| { x | ( X C_ x /\ T. ) } = |^| { y | ( `' X C_ y /\ T. ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd | |- ( ( X e. V /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( T. -> T. ) ) |
|
| 2 | idd | |- ( ( X e. V /\ y = `' x ) -> ( T. -> T. ) ) |
|
| 3 | biidd | |- ( x = X -> ( T. <-> T. ) ) |
|
| 4 | ssidd | |- ( X e. V -> X C_ X ) |
|
| 5 | elex | |- ( X e. V -> X e. _V ) |
|
| 6 | trud | |- ( X e. V -> T. ) |
|
| 7 | 1 2 3 4 5 6 | clcnvlem | |- ( X e. V -> `' |^| { x | ( X C_ x /\ T. ) } = |^| { y | ( `' X C_ y /\ T. ) } ) |