| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvresid |
|- `' ( _I |` ( dom y u. ran y ) ) = ( _I |` ( dom y u. ran y ) ) |
| 2 |
|
cnvnonrel |
|- `' ( X \ `' `' X ) = (/) |
| 3 |
|
cnv0 |
|- `' (/) = (/) |
| 4 |
2 3
|
eqtr4i |
|- `' ( X \ `' `' X ) = `' (/) |
| 5 |
4
|
dmeqi |
|- dom `' ( X \ `' `' X ) = dom `' (/) |
| 6 |
|
df-rn |
|- ran ( X \ `' `' X ) = dom `' ( X \ `' `' X ) |
| 7 |
|
df-rn |
|- ran (/) = dom `' (/) |
| 8 |
5 6 7
|
3eqtr4i |
|- ran ( X \ `' `' X ) = ran (/) |
| 9 |
|
0ss |
|- (/) C_ `' y |
| 10 |
9
|
rnssi |
|- ran (/) C_ ran `' y |
| 11 |
8 10
|
eqsstri |
|- ran ( X \ `' `' X ) C_ ran `' y |
| 12 |
|
ssequn2 |
|- ( ran ( X \ `' `' X ) C_ ran `' y <-> ( ran `' y u. ran ( X \ `' `' X ) ) = ran `' y ) |
| 13 |
11 12
|
mpbi |
|- ( ran `' y u. ran ( X \ `' `' X ) ) = ran `' y |
| 14 |
|
rnun |
|- ran ( `' y u. ( X \ `' `' X ) ) = ( ran `' y u. ran ( X \ `' `' X ) ) |
| 15 |
|
dfdm4 |
|- dom y = ran `' y |
| 16 |
13 14 15
|
3eqtr4ri |
|- dom y = ran ( `' y u. ( X \ `' `' X ) ) |
| 17 |
4
|
rneqi |
|- ran `' ( X \ `' `' X ) = ran `' (/) |
| 18 |
|
dfdm4 |
|- dom ( X \ `' `' X ) = ran `' ( X \ `' `' X ) |
| 19 |
|
dfdm4 |
|- dom (/) = ran `' (/) |
| 20 |
17 18 19
|
3eqtr4i |
|- dom ( X \ `' `' X ) = dom (/) |
| 21 |
|
dmss |
|- ( (/) C_ `' y -> dom (/) C_ dom `' y ) |
| 22 |
9 21
|
ax-mp |
|- dom (/) C_ dom `' y |
| 23 |
20 22
|
eqsstri |
|- dom ( X \ `' `' X ) C_ dom `' y |
| 24 |
|
ssequn2 |
|- ( dom ( X \ `' `' X ) C_ dom `' y <-> ( dom `' y u. dom ( X \ `' `' X ) ) = dom `' y ) |
| 25 |
23 24
|
mpbi |
|- ( dom `' y u. dom ( X \ `' `' X ) ) = dom `' y |
| 26 |
|
dmun |
|- dom ( `' y u. ( X \ `' `' X ) ) = ( dom `' y u. dom ( X \ `' `' X ) ) |
| 27 |
|
df-rn |
|- ran y = dom `' y |
| 28 |
25 26 27
|
3eqtr4ri |
|- ran y = dom ( `' y u. ( X \ `' `' X ) ) |
| 29 |
16 28
|
uneq12i |
|- ( dom y u. ran y ) = ( ran ( `' y u. ( X \ `' `' X ) ) u. dom ( `' y u. ( X \ `' `' X ) ) ) |
| 30 |
29
|
equncomi |
|- ( dom y u. ran y ) = ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) |
| 31 |
30
|
reseq2i |
|- ( _I |` ( dom y u. ran y ) ) = ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) |
| 32 |
1 31
|
eqtr2i |
|- ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) = `' ( _I |` ( dom y u. ran y ) ) |
| 33 |
|
cnvss |
|- ( ( _I |` ( dom y u. ran y ) ) C_ y -> `' ( _I |` ( dom y u. ran y ) ) C_ `' y ) |
| 34 |
32 33
|
eqsstrid |
|- ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) C_ `' y ) |
| 35 |
|
ssun1 |
|- `' y C_ ( `' y u. ( X \ `' `' X ) ) |
| 36 |
34 35
|
sstrdi |
|- ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
| 37 |
|
dmeq |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> dom x = dom ( `' y u. ( X \ `' `' X ) ) ) |
| 38 |
|
rneq |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ran x = ran ( `' y u. ( X \ `' `' X ) ) ) |
| 39 |
37 38
|
uneq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( dom x u. ran x ) = ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) |
| 40 |
39
|
reseq2d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) ) |
| 41 |
|
id |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> x = ( `' y u. ( X \ `' `' X ) ) ) |
| 42 |
40 41
|
sseq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
| 43 |
36 42
|
imbitrrid |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom x u. ran x ) ) C_ x ) ) |
| 44 |
43
|
adantl |
|- ( ( X e. V /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom x u. ran x ) ) C_ x ) ) |
| 45 |
|
cnvresid |
|- `' ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom x u. ran x ) ) |
| 46 |
|
dfdm4 |
|- dom x = ran `' x |
| 47 |
|
df-rn |
|- ran x = dom `' x |
| 48 |
46 47
|
uneq12i |
|- ( dom x u. ran x ) = ( ran `' x u. dom `' x ) |
| 49 |
48
|
equncomi |
|- ( dom x u. ran x ) = ( dom `' x u. ran `' x ) |
| 50 |
49
|
reseq2i |
|- ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom `' x u. ran `' x ) ) |
| 51 |
45 50
|
eqtr2i |
|- ( _I |` ( dom `' x u. ran `' x ) ) = `' ( _I |` ( dom x u. ran x ) ) |
| 52 |
|
cnvss |
|- ( ( _I |` ( dom x u. ran x ) ) C_ x -> `' ( _I |` ( dom x u. ran x ) ) C_ `' x ) |
| 53 |
51 52
|
eqsstrid |
|- ( ( _I |` ( dom x u. ran x ) ) C_ x -> ( _I |` ( dom `' x u. ran `' x ) ) C_ `' x ) |
| 54 |
|
dmeq |
|- ( y = `' x -> dom y = dom `' x ) |
| 55 |
|
rneq |
|- ( y = `' x -> ran y = ran `' x ) |
| 56 |
54 55
|
uneq12d |
|- ( y = `' x -> ( dom y u. ran y ) = ( dom `' x u. ran `' x ) ) |
| 57 |
56
|
reseq2d |
|- ( y = `' x -> ( _I |` ( dom y u. ran y ) ) = ( _I |` ( dom `' x u. ran `' x ) ) ) |
| 58 |
|
id |
|- ( y = `' x -> y = `' x ) |
| 59 |
57 58
|
sseq12d |
|- ( y = `' x -> ( ( _I |` ( dom y u. ran y ) ) C_ y <-> ( _I |` ( dom `' x u. ran `' x ) ) C_ `' x ) ) |
| 60 |
53 59
|
imbitrrid |
|- ( y = `' x -> ( ( _I |` ( dom x u. ran x ) ) C_ x -> ( _I |` ( dom y u. ran y ) ) C_ y ) ) |
| 61 |
60
|
adantl |
|- ( ( X e. V /\ y = `' x ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x -> ( _I |` ( dom y u. ran y ) ) C_ y ) ) |
| 62 |
|
dmeq |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> dom x = dom ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
| 63 |
|
rneq |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ran x = ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
| 64 |
62 63
|
uneq12d |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ( dom x u. ran x ) = ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) |
| 65 |
64
|
reseq2d |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) ) |
| 66 |
|
id |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> x = ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
| 67 |
65 66
|
sseq12d |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) |
| 68 |
|
ssun1 |
|- X C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) |
| 69 |
68
|
a1i |
|- ( X e. V -> X C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
| 70 |
|
dmexg |
|- ( X e. V -> dom X e. _V ) |
| 71 |
|
rnexg |
|- ( X e. V -> ran X e. _V ) |
| 72 |
70 71
|
unexd |
|- ( X e. V -> ( dom X u. ran X ) e. _V ) |
| 73 |
72
|
resiexd |
|- ( X e. V -> ( _I |` ( dom X u. ran X ) ) e. _V ) |
| 74 |
|
unexg |
|- ( ( X e. V /\ ( _I |` ( dom X u. ran X ) ) e. _V ) -> ( X u. ( _I |` ( dom X u. ran X ) ) ) e. _V ) |
| 75 |
73 74
|
mpdan |
|- ( X e. V -> ( X u. ( _I |` ( dom X u. ran X ) ) ) e. _V ) |
| 76 |
|
dmun |
|- dom ( X u. ( _I |` ( dom X u. ran X ) ) ) = ( dom X u. dom ( _I |` ( dom X u. ran X ) ) ) |
| 77 |
|
ssun1 |
|- dom X C_ ( dom X u. ran X ) |
| 78 |
|
resdmss |
|- dom ( _I |` ( dom X u. ran X ) ) C_ ( dom X u. ran X ) |
| 79 |
77 78
|
unssi |
|- ( dom X u. dom ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
| 80 |
76 79
|
eqsstri |
|- dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
| 81 |
|
rnun |
|- ran ( X u. ( _I |` ( dom X u. ran X ) ) ) = ( ran X u. ran ( _I |` ( dom X u. ran X ) ) ) |
| 82 |
|
ssun2 |
|- ran X C_ ( dom X u. ran X ) |
| 83 |
|
rnresi |
|- ran ( _I |` ( dom X u. ran X ) ) = ( dom X u. ran X ) |
| 84 |
83
|
eqimssi |
|- ran ( _I |` ( dom X u. ran X ) ) C_ ( dom X u. ran X ) |
| 85 |
82 84
|
unssi |
|- ( ran X u. ran ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
| 86 |
81 85
|
eqsstri |
|- ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
| 87 |
80 86
|
pm3.2i |
|- ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) /\ ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) ) |
| 88 |
|
unss |
|- ( ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) /\ ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) ) <-> ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) C_ ( dom X u. ran X ) ) |
| 89 |
|
ssres2 |
|- ( ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) C_ ( dom X u. ran X ) -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( _I |` ( dom X u. ran X ) ) ) |
| 90 |
88 89
|
sylbi |
|- ( ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) /\ ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) ) -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( _I |` ( dom X u. ran X ) ) ) |
| 91 |
|
ssun4 |
|- ( ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( _I |` ( dom X u. ran X ) ) -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
| 92 |
87 90 91
|
mp2b |
|- ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) |
| 93 |
92
|
a1i |
|- ( X e. V -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
| 94 |
44 61 67 69 75 93
|
clcnvlem |
|- ( X e. V -> `' |^| { x | ( X C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) } = |^| { y | ( `' X C_ y /\ ( _I |` ( dom y u. ran y ) ) C_ y ) } ) |