Step |
Hyp |
Ref |
Expression |
1 |
|
cnvresid |
|- `' ( _I |` ( dom y u. ran y ) ) = ( _I |` ( dom y u. ran y ) ) |
2 |
|
cnvnonrel |
|- `' ( X \ `' `' X ) = (/) |
3 |
|
cnv0 |
|- `' (/) = (/) |
4 |
2 3
|
eqtr4i |
|- `' ( X \ `' `' X ) = `' (/) |
5 |
4
|
dmeqi |
|- dom `' ( X \ `' `' X ) = dom `' (/) |
6 |
|
df-rn |
|- ran ( X \ `' `' X ) = dom `' ( X \ `' `' X ) |
7 |
|
df-rn |
|- ran (/) = dom `' (/) |
8 |
5 6 7
|
3eqtr4i |
|- ran ( X \ `' `' X ) = ran (/) |
9 |
|
0ss |
|- (/) C_ `' y |
10 |
9
|
rnssi |
|- ran (/) C_ ran `' y |
11 |
8 10
|
eqsstri |
|- ran ( X \ `' `' X ) C_ ran `' y |
12 |
|
ssequn2 |
|- ( ran ( X \ `' `' X ) C_ ran `' y <-> ( ran `' y u. ran ( X \ `' `' X ) ) = ran `' y ) |
13 |
11 12
|
mpbi |
|- ( ran `' y u. ran ( X \ `' `' X ) ) = ran `' y |
14 |
|
rnun |
|- ran ( `' y u. ( X \ `' `' X ) ) = ( ran `' y u. ran ( X \ `' `' X ) ) |
15 |
|
dfdm4 |
|- dom y = ran `' y |
16 |
13 14 15
|
3eqtr4ri |
|- dom y = ran ( `' y u. ( X \ `' `' X ) ) |
17 |
4
|
rneqi |
|- ran `' ( X \ `' `' X ) = ran `' (/) |
18 |
|
dfdm4 |
|- dom ( X \ `' `' X ) = ran `' ( X \ `' `' X ) |
19 |
|
dfdm4 |
|- dom (/) = ran `' (/) |
20 |
17 18 19
|
3eqtr4i |
|- dom ( X \ `' `' X ) = dom (/) |
21 |
|
dmss |
|- ( (/) C_ `' y -> dom (/) C_ dom `' y ) |
22 |
9 21
|
ax-mp |
|- dom (/) C_ dom `' y |
23 |
20 22
|
eqsstri |
|- dom ( X \ `' `' X ) C_ dom `' y |
24 |
|
ssequn2 |
|- ( dom ( X \ `' `' X ) C_ dom `' y <-> ( dom `' y u. dom ( X \ `' `' X ) ) = dom `' y ) |
25 |
23 24
|
mpbi |
|- ( dom `' y u. dom ( X \ `' `' X ) ) = dom `' y |
26 |
|
dmun |
|- dom ( `' y u. ( X \ `' `' X ) ) = ( dom `' y u. dom ( X \ `' `' X ) ) |
27 |
|
df-rn |
|- ran y = dom `' y |
28 |
25 26 27
|
3eqtr4ri |
|- ran y = dom ( `' y u. ( X \ `' `' X ) ) |
29 |
16 28
|
uneq12i |
|- ( dom y u. ran y ) = ( ran ( `' y u. ( X \ `' `' X ) ) u. dom ( `' y u. ( X \ `' `' X ) ) ) |
30 |
29
|
equncomi |
|- ( dom y u. ran y ) = ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) |
31 |
30
|
reseq2i |
|- ( _I |` ( dom y u. ran y ) ) = ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) |
32 |
1 31
|
eqtr2i |
|- ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) = `' ( _I |` ( dom y u. ran y ) ) |
33 |
|
cnvss |
|- ( ( _I |` ( dom y u. ran y ) ) C_ y -> `' ( _I |` ( dom y u. ran y ) ) C_ `' y ) |
34 |
32 33
|
eqsstrid |
|- ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) C_ `' y ) |
35 |
|
ssun1 |
|- `' y C_ ( `' y u. ( X \ `' `' X ) ) |
36 |
34 35
|
sstrdi |
|- ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
37 |
|
dmeq |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> dom x = dom ( `' y u. ( X \ `' `' X ) ) ) |
38 |
|
rneq |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ran x = ran ( `' y u. ( X \ `' `' X ) ) ) |
39 |
37 38
|
uneq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( dom x u. ran x ) = ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) |
40 |
39
|
reseq2d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) ) |
41 |
|
id |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> x = ( `' y u. ( X \ `' `' X ) ) ) |
42 |
40 41
|
sseq12d |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( `' y u. ( X \ `' `' X ) ) u. ran ( `' y u. ( X \ `' `' X ) ) ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
43 |
36 42
|
syl5ibr |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom x u. ran x ) ) C_ x ) ) |
44 |
43
|
adantl |
|- ( ( X e. V /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( _I |` ( dom y u. ran y ) ) C_ y -> ( _I |` ( dom x u. ran x ) ) C_ x ) ) |
45 |
|
cnvresid |
|- `' ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom x u. ran x ) ) |
46 |
|
dfdm4 |
|- dom x = ran `' x |
47 |
|
df-rn |
|- ran x = dom `' x |
48 |
46 47
|
uneq12i |
|- ( dom x u. ran x ) = ( ran `' x u. dom `' x ) |
49 |
48
|
equncomi |
|- ( dom x u. ran x ) = ( dom `' x u. ran `' x ) |
50 |
49
|
reseq2i |
|- ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom `' x u. ran `' x ) ) |
51 |
45 50
|
eqtr2i |
|- ( _I |` ( dom `' x u. ran `' x ) ) = `' ( _I |` ( dom x u. ran x ) ) |
52 |
|
cnvss |
|- ( ( _I |` ( dom x u. ran x ) ) C_ x -> `' ( _I |` ( dom x u. ran x ) ) C_ `' x ) |
53 |
51 52
|
eqsstrid |
|- ( ( _I |` ( dom x u. ran x ) ) C_ x -> ( _I |` ( dom `' x u. ran `' x ) ) C_ `' x ) |
54 |
|
dmeq |
|- ( y = `' x -> dom y = dom `' x ) |
55 |
|
rneq |
|- ( y = `' x -> ran y = ran `' x ) |
56 |
54 55
|
uneq12d |
|- ( y = `' x -> ( dom y u. ran y ) = ( dom `' x u. ran `' x ) ) |
57 |
56
|
reseq2d |
|- ( y = `' x -> ( _I |` ( dom y u. ran y ) ) = ( _I |` ( dom `' x u. ran `' x ) ) ) |
58 |
|
id |
|- ( y = `' x -> y = `' x ) |
59 |
57 58
|
sseq12d |
|- ( y = `' x -> ( ( _I |` ( dom y u. ran y ) ) C_ y <-> ( _I |` ( dom `' x u. ran `' x ) ) C_ `' x ) ) |
60 |
53 59
|
syl5ibr |
|- ( y = `' x -> ( ( _I |` ( dom x u. ran x ) ) C_ x -> ( _I |` ( dom y u. ran y ) ) C_ y ) ) |
61 |
60
|
adantl |
|- ( ( X e. V /\ y = `' x ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x -> ( _I |` ( dom y u. ran y ) ) C_ y ) ) |
62 |
|
dmeq |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> dom x = dom ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
63 |
|
rneq |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ran x = ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
64 |
62 63
|
uneq12d |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ( dom x u. ran x ) = ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) |
65 |
64
|
reseq2d |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) ) |
66 |
|
id |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> x = ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
67 |
65 66
|
sseq12d |
|- ( x = ( X u. ( _I |` ( dom X u. ran X ) ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) |
68 |
|
ssun1 |
|- X C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) |
69 |
68
|
a1i |
|- ( X e. V -> X C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
70 |
|
dmexg |
|- ( X e. V -> dom X e. _V ) |
71 |
|
rnexg |
|- ( X e. V -> ran X e. _V ) |
72 |
|
unexg |
|- ( ( dom X e. _V /\ ran X e. _V ) -> ( dom X u. ran X ) e. _V ) |
73 |
70 71 72
|
syl2anc |
|- ( X e. V -> ( dom X u. ran X ) e. _V ) |
74 |
73
|
resiexd |
|- ( X e. V -> ( _I |` ( dom X u. ran X ) ) e. _V ) |
75 |
|
unexg |
|- ( ( X e. V /\ ( _I |` ( dom X u. ran X ) ) e. _V ) -> ( X u. ( _I |` ( dom X u. ran X ) ) ) e. _V ) |
76 |
74 75
|
mpdan |
|- ( X e. V -> ( X u. ( _I |` ( dom X u. ran X ) ) ) e. _V ) |
77 |
|
dmun |
|- dom ( X u. ( _I |` ( dom X u. ran X ) ) ) = ( dom X u. dom ( _I |` ( dom X u. ran X ) ) ) |
78 |
|
ssun1 |
|- dom X C_ ( dom X u. ran X ) |
79 |
|
dmresi |
|- dom ( _I |` ( dom X u. ran X ) ) = ( dom X u. ran X ) |
80 |
79
|
eqimssi |
|- dom ( _I |` ( dom X u. ran X ) ) C_ ( dom X u. ran X ) |
81 |
78 80
|
unssi |
|- ( dom X u. dom ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
82 |
77 81
|
eqsstri |
|- dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
83 |
|
rnun |
|- ran ( X u. ( _I |` ( dom X u. ran X ) ) ) = ( ran X u. ran ( _I |` ( dom X u. ran X ) ) ) |
84 |
|
ssun2 |
|- ran X C_ ( dom X u. ran X ) |
85 |
|
rnresi |
|- ran ( _I |` ( dom X u. ran X ) ) = ( dom X u. ran X ) |
86 |
85
|
eqimssi |
|- ran ( _I |` ( dom X u. ran X ) ) C_ ( dom X u. ran X ) |
87 |
84 86
|
unssi |
|- ( ran X u. ran ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
88 |
83 87
|
eqsstri |
|- ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) |
89 |
82 88
|
pm3.2i |
|- ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) /\ ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) ) |
90 |
|
unss |
|- ( ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) /\ ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) ) <-> ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) C_ ( dom X u. ran X ) ) |
91 |
|
ssres2 |
|- ( ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) C_ ( dom X u. ran X ) -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( _I |` ( dom X u. ran X ) ) ) |
92 |
90 91
|
sylbi |
|- ( ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) /\ ran ( X u. ( _I |` ( dom X u. ran X ) ) ) C_ ( dom X u. ran X ) ) -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( _I |` ( dom X u. ran X ) ) ) |
93 |
|
ssun4 |
|- ( ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( _I |` ( dom X u. ran X ) ) -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
94 |
89 92 93
|
mp2b |
|- ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) |
95 |
94
|
a1i |
|- ( X e. V -> ( _I |` ( dom ( X u. ( _I |` ( dom X u. ran X ) ) ) u. ran ( X u. ( _I |` ( dom X u. ran X ) ) ) ) ) C_ ( X u. ( _I |` ( dom X u. ran X ) ) ) ) |
96 |
44 61 67 69 76 95
|
clcnvlem |
|- ( X e. V -> `' |^| { x | ( X C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) } = |^| { y | ( `' X C_ y /\ ( _I |` ( dom y u. ran y ) ) C_ y ) } ) |