Metamath Proof Explorer


Theorem sstrdi

Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses sstrdi.1
|- ( ph -> A C_ B )
sstrdi.2
|- B C_ C
Assertion sstrdi
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 sstrdi.1
 |-  ( ph -> A C_ B )
2 sstrdi.2
 |-  B C_ C
3 2 a1i
 |-  ( ph -> B C_ C )
4 1 3 sstrd
 |-  ( ph -> A C_ C )