Description: Distributive law for range over union. Theorem 8 of Suppes p. 60. (Contributed by NM, 24-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnun | |- ran ( A u. B ) = ( ran A u. ran B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun | |- `' ( A u. B ) = ( `' A u. `' B ) |
|
| 2 | 1 | dmeqi | |- dom `' ( A u. B ) = dom ( `' A u. `' B ) |
| 3 | dmun | |- dom ( `' A u. `' B ) = ( dom `' A u. dom `' B ) |
|
| 4 | 2 3 | eqtri | |- dom `' ( A u. B ) = ( dom `' A u. dom `' B ) |
| 5 | df-rn | |- ran ( A u. B ) = dom `' ( A u. B ) |
|
| 6 | df-rn | |- ran A = dom `' A |
|
| 7 | df-rn | |- ran B = dom `' B |
|
| 8 | 6 7 | uneq12i | |- ( ran A u. ran B ) = ( dom `' A u. dom `' B ) |
| 9 | 4 5 8 | 3eqtr4i | |- ran ( A u. B ) = ( ran A u. ran B ) |