Metamath Proof Explorer


Theorem clcnvlem

Description: When A , an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020)

Ref Expression
Hypotheses clcnvlem.sub1
|- ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ch -> ps ) )
clcnvlem.sub2
|- ( ( ph /\ y = `' x ) -> ( ps -> ch ) )
clcnvlem.sub3
|- ( x = A -> ( ps <-> th ) )
clcnvlem.ssub
|- ( ph -> X C_ A )
clcnvlem.ubex
|- ( ph -> A e. _V )
clcnvlem.clex
|- ( ph -> th )
Assertion clcnvlem
|- ( ph -> `' |^| { x | ( X C_ x /\ ps ) } = |^| { y | ( `' X C_ y /\ ch ) } )

Proof

Step Hyp Ref Expression
1 clcnvlem.sub1
 |-  ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ch -> ps ) )
2 clcnvlem.sub2
 |-  ( ( ph /\ y = `' x ) -> ( ps -> ch ) )
3 clcnvlem.sub3
 |-  ( x = A -> ( ps <-> th ) )
4 clcnvlem.ssub
 |-  ( ph -> X C_ A )
5 clcnvlem.ubex
 |-  ( ph -> A e. _V )
6 clcnvlem.clex
 |-  ( ph -> th )
7 4 6 jca
 |-  ( ph -> ( X C_ A /\ th ) )
8 3 cleq2lem
 |-  ( x = A -> ( ( X C_ x /\ ps ) <-> ( X C_ A /\ th ) ) )
9 5 7 8 spcedv
 |-  ( ph -> E. x ( X C_ x /\ ps ) )
10 9 cnvintabd
 |-  ( ph -> `' |^| { x | ( X C_ x /\ ps ) } = |^| { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } )
11 df-rab
 |-  { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = { z | ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) }
12 exsimpl
 |-  ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> E. x z = `' x )
13 relcnv
 |-  Rel `' x
14 releq
 |-  ( z = `' x -> ( Rel z <-> Rel `' x ) )
15 13 14 mpbiri
 |-  ( z = `' x -> Rel z )
16 15 exlimiv
 |-  ( E. x z = `' x -> Rel z )
17 12 16 syl
 |-  ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> Rel z )
18 df-rel
 |-  ( Rel z <-> z C_ ( _V X. _V ) )
19 17 18 sylib
 |-  ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> z C_ ( _V X. _V ) )
20 velpw
 |-  ( z e. ~P ( _V X. _V ) <-> z C_ ( _V X. _V ) )
21 20 bicomi
 |-  ( z C_ ( _V X. _V ) <-> z e. ~P ( _V X. _V ) )
22 19 21 sylib
 |-  ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> z e. ~P ( _V X. _V ) )
23 22 pm4.71ri
 |-  ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) <-> ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) )
24 23 bicomi
 |-  ( ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) <-> E. x ( z = `' x /\ ( X C_ x /\ ps ) ) )
25 24 abbii
 |-  { z | ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) } = { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) }
26 11 25 eqtri
 |-  { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) }
27 26 inteqi
 |-  |^| { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) }
28 27 a1i
 |-  ( ph -> |^| { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } )
29 vex
 |-  y e. _V
30 29 cnvex
 |-  `' y e. _V
31 30 cnvex
 |-  `' `' y e. _V
32 31 a1i
 |-  ( ph -> `' `' y e. _V )
33 5 4 ssexd
 |-  ( ph -> X e. _V )
34 33 difexd
 |-  ( ph -> ( X \ `' `' X ) e. _V )
35 unexg
 |-  ( ( `' y e. _V /\ ( X \ `' `' X ) e. _V ) -> ( `' y u. ( X \ `' `' X ) ) e. _V )
36 30 34 35 sylancr
 |-  ( ph -> ( `' y u. ( X \ `' `' X ) ) e. _V )
37 inundif
 |-  ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X
38 cnvun
 |-  `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = ( `' ( X i^i `' `' X ) u. `' ( X \ `' `' X ) )
39 38 sseq1i
 |-  ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y <-> ( `' ( X i^i `' `' X ) u. `' ( X \ `' `' X ) ) C_ y )
40 39 biimpi
 |-  ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( `' ( X i^i `' `' X ) u. `' ( X \ `' `' X ) ) C_ y )
41 40 unssad
 |-  ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> `' ( X i^i `' `' X ) C_ y )
42 relcnv
 |-  Rel `' `' X
43 relin2
 |-  ( Rel `' `' X -> Rel ( X i^i `' `' X ) )
44 42 43 ax-mp
 |-  Rel ( X i^i `' `' X )
45 dfrel2
 |-  ( Rel ( X i^i `' `' X ) <-> `' `' ( X i^i `' `' X ) = ( X i^i `' `' X ) )
46 44 45 mpbi
 |-  `' `' ( X i^i `' `' X ) = ( X i^i `' `' X )
47 cnvss
 |-  ( `' ( X i^i `' `' X ) C_ y -> `' `' ( X i^i `' `' X ) C_ `' y )
48 46 47 eqsstrrid
 |-  ( `' ( X i^i `' `' X ) C_ y -> ( X i^i `' `' X ) C_ `' y )
49 41 48 syl
 |-  ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( X i^i `' `' X ) C_ `' y )
50 ssid
 |-  ( X \ `' `' X ) C_ ( X \ `' `' X )
51 unss12
 |-  ( ( ( X i^i `' `' X ) C_ `' y /\ ( X \ `' `' X ) C_ ( X \ `' `' X ) ) -> ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) )
52 49 50 51 sylancl
 |-  ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) )
53 52 a1i
 |-  ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) )
54 cnveq
 |-  ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = `' X )
55 54 sseq1d
 |-  ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y <-> `' X C_ y ) )
56 sseq1
 |-  ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) <-> X C_ ( `' y u. ( X \ `' `' X ) ) ) )
57 53 55 56 3imtr3d
 |-  ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( `' X C_ y -> X C_ ( `' y u. ( X \ `' `' X ) ) ) )
58 37 57 ax-mp
 |-  ( `' X C_ y -> X C_ ( `' y u. ( X \ `' `' X ) ) )
59 sseq2
 |-  ( x = ( `' y u. ( X \ `' `' X ) ) -> ( X C_ x <-> X C_ ( `' y u. ( X \ `' `' X ) ) ) )
60 58 59 syl5ibr
 |-  ( x = ( `' y u. ( X \ `' `' X ) ) -> ( `' X C_ y -> X C_ x ) )
61 60 adantl
 |-  ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( `' X C_ y -> X C_ x ) )
62 61 1 anim12d
 |-  ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( `' X C_ y /\ ch ) -> ( X C_ x /\ ps ) ) )
63 cnvun
 |-  `' ( `' y u. ( X \ `' `' X ) ) = ( `' `' y u. `' ( X \ `' `' X ) )
64 cnvnonrel
 |-  `' ( X \ `' `' X ) = (/)
65 0ss
 |-  (/) C_ `' `' y
66 64 65 eqsstri
 |-  `' ( X \ `' `' X ) C_ `' `' y
67 ssequn2
 |-  ( `' ( X \ `' `' X ) C_ `' `' y <-> ( `' `' y u. `' ( X \ `' `' X ) ) = `' `' y )
68 66 67 mpbi
 |-  ( `' `' y u. `' ( X \ `' `' X ) ) = `' `' y
69 63 68 eqtr2i
 |-  `' `' y = `' ( `' y u. ( X \ `' `' X ) )
70 cnveq
 |-  ( x = ( `' y u. ( X \ `' `' X ) ) -> `' x = `' ( `' y u. ( X \ `' `' X ) ) )
71 69 70 eqtr4id
 |-  ( x = ( `' y u. ( X \ `' `' X ) ) -> `' `' y = `' x )
72 71 adantl
 |-  ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> `' `' y = `' x )
73 62 72 jctild
 |-  ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( `' X C_ y /\ ch ) -> ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) )
74 36 73 spcimedv
 |-  ( ph -> ( ( `' X C_ y /\ ch ) -> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) )
75 74 imp
 |-  ( ( ph /\ ( `' X C_ y /\ ch ) ) -> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) )
76 75 adantlr
 |-  ( ( ( ph /\ z = `' `' y ) /\ ( `' X C_ y /\ ch ) ) -> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) )
77 eqeq1
 |-  ( z = `' `' y -> ( z = `' x <-> `' `' y = `' x ) )
78 77 anbi1d
 |-  ( z = `' `' y -> ( ( z = `' x /\ ( X C_ x /\ ps ) ) <-> ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) )
79 78 exbidv
 |-  ( z = `' `' y -> ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) <-> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) )
80 79 ad2antlr
 |-  ( ( ( ph /\ z = `' `' y ) /\ ( `' X C_ y /\ ch ) ) -> ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) <-> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) )
81 76 80 mpbird
 |-  ( ( ( ph /\ z = `' `' y ) /\ ( `' X C_ y /\ ch ) ) -> E. x ( z = `' x /\ ( X C_ x /\ ps ) ) )
82 81 ex
 |-  ( ( ph /\ z = `' `' y ) -> ( ( `' X C_ y /\ ch ) -> E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) )
83 cnvcnvss
 |-  `' `' y C_ y
84 83 a1i
 |-  ( ph -> `' `' y C_ y )
85 32 82 84 intabssd
 |-  ( ph -> |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } C_ |^| { y | ( `' X C_ y /\ ch ) } )
86 vex
 |-  z e. _V
87 86 a1i
 |-  ( ph -> z e. _V )
88 eqtr
 |-  ( ( y = z /\ z = `' x ) -> y = `' x )
89 cnvss
 |-  ( X C_ x -> `' X C_ `' x )
90 sseq2
 |-  ( y = `' x -> ( `' X C_ y <-> `' X C_ `' x ) )
91 89 90 syl5ibr
 |-  ( y = `' x -> ( X C_ x -> `' X C_ y ) )
92 91 adantl
 |-  ( ( ph /\ y = `' x ) -> ( X C_ x -> `' X C_ y ) )
93 92 2 anim12d
 |-  ( ( ph /\ y = `' x ) -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) )
94 93 ex
 |-  ( ph -> ( y = `' x -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) ) )
95 88 94 syl5
 |-  ( ph -> ( ( y = z /\ z = `' x ) -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) ) )
96 95 impl
 |-  ( ( ( ph /\ y = z ) /\ z = `' x ) -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) )
97 96 expimpd
 |-  ( ( ph /\ y = z ) -> ( ( z = `' x /\ ( X C_ x /\ ps ) ) -> ( `' X C_ y /\ ch ) ) )
98 97 exlimdv
 |-  ( ( ph /\ y = z ) -> ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> ( `' X C_ y /\ ch ) ) )
99 ssid
 |-  z C_ z
100 99 a1i
 |-  ( ph -> z C_ z )
101 87 98 100 intabssd
 |-  ( ph -> |^| { y | ( `' X C_ y /\ ch ) } C_ |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } )
102 85 101 eqssd
 |-  ( ph -> |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = |^| { y | ( `' X C_ y /\ ch ) } )
103 10 28 102 3eqtrd
 |-  ( ph -> `' |^| { x | ( X C_ x /\ ps ) } = |^| { y | ( `' X C_ y /\ ch ) } )