| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clcnvlem.sub1 |
|- ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ch -> ps ) ) |
| 2 |
|
clcnvlem.sub2 |
|- ( ( ph /\ y = `' x ) -> ( ps -> ch ) ) |
| 3 |
|
clcnvlem.sub3 |
|- ( x = A -> ( ps <-> th ) ) |
| 4 |
|
clcnvlem.ssub |
|- ( ph -> X C_ A ) |
| 5 |
|
clcnvlem.ubex |
|- ( ph -> A e. _V ) |
| 6 |
|
clcnvlem.clex |
|- ( ph -> th ) |
| 7 |
4 6
|
jca |
|- ( ph -> ( X C_ A /\ th ) ) |
| 8 |
3
|
cleq2lem |
|- ( x = A -> ( ( X C_ x /\ ps ) <-> ( X C_ A /\ th ) ) ) |
| 9 |
5 7 8
|
spcedv |
|- ( ph -> E. x ( X C_ x /\ ps ) ) |
| 10 |
9
|
cnvintabd |
|- ( ph -> `' |^| { x | ( X C_ x /\ ps ) } = |^| { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } ) |
| 11 |
|
df-rab |
|- { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = { z | ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) } |
| 12 |
|
exsimpl |
|- ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> E. x z = `' x ) |
| 13 |
|
relcnv |
|- Rel `' x |
| 14 |
|
releq |
|- ( z = `' x -> ( Rel z <-> Rel `' x ) ) |
| 15 |
13 14
|
mpbiri |
|- ( z = `' x -> Rel z ) |
| 16 |
15
|
exlimiv |
|- ( E. x z = `' x -> Rel z ) |
| 17 |
12 16
|
syl |
|- ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> Rel z ) |
| 18 |
|
df-rel |
|- ( Rel z <-> z C_ ( _V X. _V ) ) |
| 19 |
17 18
|
sylib |
|- ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> z C_ ( _V X. _V ) ) |
| 20 |
|
velpw |
|- ( z e. ~P ( _V X. _V ) <-> z C_ ( _V X. _V ) ) |
| 21 |
20
|
bicomi |
|- ( z C_ ( _V X. _V ) <-> z e. ~P ( _V X. _V ) ) |
| 22 |
19 21
|
sylib |
|- ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> z e. ~P ( _V X. _V ) ) |
| 23 |
22
|
pm4.71ri |
|- ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) <-> ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) ) |
| 24 |
23
|
bicomi |
|- ( ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) <-> E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) |
| 25 |
24
|
abbii |
|- { z | ( z e. ~P ( _V X. _V ) /\ E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) } = { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } |
| 26 |
11 25
|
eqtri |
|- { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } |
| 27 |
26
|
inteqi |
|- |^| { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } |
| 28 |
27
|
a1i |
|- ( ph -> |^| { z e. ~P ( _V X. _V ) | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } ) |
| 29 |
|
vex |
|- y e. _V |
| 30 |
29
|
cnvex |
|- `' y e. _V |
| 31 |
30
|
cnvex |
|- `' `' y e. _V |
| 32 |
31
|
a1i |
|- ( ph -> `' `' y e. _V ) |
| 33 |
5 4
|
ssexd |
|- ( ph -> X e. _V ) |
| 34 |
33
|
difexd |
|- ( ph -> ( X \ `' `' X ) e. _V ) |
| 35 |
|
unexg |
|- ( ( `' y e. _V /\ ( X \ `' `' X ) e. _V ) -> ( `' y u. ( X \ `' `' X ) ) e. _V ) |
| 36 |
30 34 35
|
sylancr |
|- ( ph -> ( `' y u. ( X \ `' `' X ) ) e. _V ) |
| 37 |
|
inundif |
|- ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X |
| 38 |
|
cnvun |
|- `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = ( `' ( X i^i `' `' X ) u. `' ( X \ `' `' X ) ) |
| 39 |
38
|
sseq1i |
|- ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y <-> ( `' ( X i^i `' `' X ) u. `' ( X \ `' `' X ) ) C_ y ) |
| 40 |
39
|
biimpi |
|- ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( `' ( X i^i `' `' X ) u. `' ( X \ `' `' X ) ) C_ y ) |
| 41 |
40
|
unssad |
|- ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> `' ( X i^i `' `' X ) C_ y ) |
| 42 |
|
relcnv |
|- Rel `' `' X |
| 43 |
|
relin2 |
|- ( Rel `' `' X -> Rel ( X i^i `' `' X ) ) |
| 44 |
42 43
|
ax-mp |
|- Rel ( X i^i `' `' X ) |
| 45 |
|
dfrel2 |
|- ( Rel ( X i^i `' `' X ) <-> `' `' ( X i^i `' `' X ) = ( X i^i `' `' X ) ) |
| 46 |
44 45
|
mpbi |
|- `' `' ( X i^i `' `' X ) = ( X i^i `' `' X ) |
| 47 |
|
cnvss |
|- ( `' ( X i^i `' `' X ) C_ y -> `' `' ( X i^i `' `' X ) C_ `' y ) |
| 48 |
46 47
|
eqsstrrid |
|- ( `' ( X i^i `' `' X ) C_ y -> ( X i^i `' `' X ) C_ `' y ) |
| 49 |
41 48
|
syl |
|- ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( X i^i `' `' X ) C_ `' y ) |
| 50 |
|
ssid |
|- ( X \ `' `' X ) C_ ( X \ `' `' X ) |
| 51 |
|
unss12 |
|- ( ( ( X i^i `' `' X ) C_ `' y /\ ( X \ `' `' X ) C_ ( X \ `' `' X ) ) -> ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
| 52 |
49 50 51
|
sylancl |
|- ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) |
| 53 |
52
|
a1i |
|- ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y -> ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
| 54 |
|
cnveq |
|- ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = `' X ) |
| 55 |
54
|
sseq1d |
|- ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( `' ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ y <-> `' X C_ y ) ) |
| 56 |
|
sseq1 |
|- ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) C_ ( `' y u. ( X \ `' `' X ) ) <-> X C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
| 57 |
53 55 56
|
3imtr3d |
|- ( ( ( X i^i `' `' X ) u. ( X \ `' `' X ) ) = X -> ( `' X C_ y -> X C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
| 58 |
37 57
|
ax-mp |
|- ( `' X C_ y -> X C_ ( `' y u. ( X \ `' `' X ) ) ) |
| 59 |
|
sseq2 |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( X C_ x <-> X C_ ( `' y u. ( X \ `' `' X ) ) ) ) |
| 60 |
58 59
|
imbitrrid |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> ( `' X C_ y -> X C_ x ) ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( `' X C_ y -> X C_ x ) ) |
| 62 |
61 1
|
anim12d |
|- ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( `' X C_ y /\ ch ) -> ( X C_ x /\ ps ) ) ) |
| 63 |
|
cnvun |
|- `' ( `' y u. ( X \ `' `' X ) ) = ( `' `' y u. `' ( X \ `' `' X ) ) |
| 64 |
|
cnvnonrel |
|- `' ( X \ `' `' X ) = (/) |
| 65 |
|
0ss |
|- (/) C_ `' `' y |
| 66 |
64 65
|
eqsstri |
|- `' ( X \ `' `' X ) C_ `' `' y |
| 67 |
|
ssequn2 |
|- ( `' ( X \ `' `' X ) C_ `' `' y <-> ( `' `' y u. `' ( X \ `' `' X ) ) = `' `' y ) |
| 68 |
66 67
|
mpbi |
|- ( `' `' y u. `' ( X \ `' `' X ) ) = `' `' y |
| 69 |
63 68
|
eqtr2i |
|- `' `' y = `' ( `' y u. ( X \ `' `' X ) ) |
| 70 |
|
cnveq |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> `' x = `' ( `' y u. ( X \ `' `' X ) ) ) |
| 71 |
69 70
|
eqtr4id |
|- ( x = ( `' y u. ( X \ `' `' X ) ) -> `' `' y = `' x ) |
| 72 |
71
|
adantl |
|- ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> `' `' y = `' x ) |
| 73 |
62 72
|
jctild |
|- ( ( ph /\ x = ( `' y u. ( X \ `' `' X ) ) ) -> ( ( `' X C_ y /\ ch ) -> ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) ) |
| 74 |
36 73
|
spcimedv |
|- ( ph -> ( ( `' X C_ y /\ ch ) -> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) ) |
| 75 |
74
|
imp |
|- ( ( ph /\ ( `' X C_ y /\ ch ) ) -> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) |
| 76 |
75
|
adantlr |
|- ( ( ( ph /\ z = `' `' y ) /\ ( `' X C_ y /\ ch ) ) -> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) |
| 77 |
|
eqeq1 |
|- ( z = `' `' y -> ( z = `' x <-> `' `' y = `' x ) ) |
| 78 |
77
|
anbi1d |
|- ( z = `' `' y -> ( ( z = `' x /\ ( X C_ x /\ ps ) ) <-> ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) ) |
| 79 |
78
|
exbidv |
|- ( z = `' `' y -> ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) <-> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) ) |
| 80 |
79
|
ad2antlr |
|- ( ( ( ph /\ z = `' `' y ) /\ ( `' X C_ y /\ ch ) ) -> ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) <-> E. x ( `' `' y = `' x /\ ( X C_ x /\ ps ) ) ) ) |
| 81 |
76 80
|
mpbird |
|- ( ( ( ph /\ z = `' `' y ) /\ ( `' X C_ y /\ ch ) ) -> E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) |
| 82 |
81
|
ex |
|- ( ( ph /\ z = `' `' y ) -> ( ( `' X C_ y /\ ch ) -> E. x ( z = `' x /\ ( X C_ x /\ ps ) ) ) ) |
| 83 |
|
cnvcnvss |
|- `' `' y C_ y |
| 84 |
83
|
a1i |
|- ( ph -> `' `' y C_ y ) |
| 85 |
32 82 84
|
intabssd |
|- ( ph -> |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } C_ |^| { y | ( `' X C_ y /\ ch ) } ) |
| 86 |
|
vex |
|- z e. _V |
| 87 |
86
|
a1i |
|- ( ph -> z e. _V ) |
| 88 |
|
eqtr |
|- ( ( y = z /\ z = `' x ) -> y = `' x ) |
| 89 |
|
cnvss |
|- ( X C_ x -> `' X C_ `' x ) |
| 90 |
|
sseq2 |
|- ( y = `' x -> ( `' X C_ y <-> `' X C_ `' x ) ) |
| 91 |
89 90
|
imbitrrid |
|- ( y = `' x -> ( X C_ x -> `' X C_ y ) ) |
| 92 |
91
|
adantl |
|- ( ( ph /\ y = `' x ) -> ( X C_ x -> `' X C_ y ) ) |
| 93 |
92 2
|
anim12d |
|- ( ( ph /\ y = `' x ) -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) ) |
| 94 |
93
|
ex |
|- ( ph -> ( y = `' x -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) ) ) |
| 95 |
88 94
|
syl5 |
|- ( ph -> ( ( y = z /\ z = `' x ) -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) ) ) |
| 96 |
95
|
impl |
|- ( ( ( ph /\ y = z ) /\ z = `' x ) -> ( ( X C_ x /\ ps ) -> ( `' X C_ y /\ ch ) ) ) |
| 97 |
96
|
expimpd |
|- ( ( ph /\ y = z ) -> ( ( z = `' x /\ ( X C_ x /\ ps ) ) -> ( `' X C_ y /\ ch ) ) ) |
| 98 |
97
|
exlimdv |
|- ( ( ph /\ y = z ) -> ( E. x ( z = `' x /\ ( X C_ x /\ ps ) ) -> ( `' X C_ y /\ ch ) ) ) |
| 99 |
|
ssid |
|- z C_ z |
| 100 |
99
|
a1i |
|- ( ph -> z C_ z ) |
| 101 |
87 98 100
|
intabssd |
|- ( ph -> |^| { y | ( `' X C_ y /\ ch ) } C_ |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } ) |
| 102 |
85 101
|
eqssd |
|- ( ph -> |^| { z | E. x ( z = `' x /\ ( X C_ x /\ ps ) ) } = |^| { y | ( `' X C_ y /\ ch ) } ) |
| 103 |
10 28 102
|
3eqtrd |
|- ( ph -> `' |^| { x | ( X C_ x /\ ps ) } = |^| { y | ( `' X C_ y /\ ch ) } ) |