Description: Equality implies bijection. (Contributed by RP, 24-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cleq2lem.b | |- ( A = B -> ( ph <-> ps ) ) |
|
| Assertion | cleq2lem | |- ( A = B -> ( ( R C_ A /\ ph ) <-> ( R C_ B /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleq2lem.b | |- ( A = B -> ( ph <-> ps ) ) |
|
| 2 | sseq2 | |- ( A = B -> ( R C_ A <-> R C_ B ) ) |
|
| 3 | 2 1 | anbi12d | |- ( A = B -> ( ( R C_ A /\ ph ) <-> ( R C_ B /\ ps ) ) ) |