Metamath Proof Explorer


Theorem cbvcllem

Description: Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypothesis cbvcllem.y
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvcllem
|- { x | ( X C_ x /\ ph ) } = { y | ( X C_ y /\ ps ) }

Proof

Step Hyp Ref Expression
1 cbvcllem.y
 |-  ( x = y -> ( ph <-> ps ) )
2 1 cleq2lem
 |-  ( x = y -> ( ( X C_ x /\ ph ) <-> ( X C_ y /\ ps ) ) )
3 2 cbvabv
 |-  { x | ( X C_ x /\ ph ) } = { y | ( X C_ y /\ ps ) }