Step |
Hyp |
Ref |
Expression |
1 |
|
clublem.y |
|- ( ph -> Y e. _V ) |
2 |
|
clublem.sub |
|- ( x = Y -> ( ps <-> ch ) ) |
3 |
|
clublem.sup |
|- ( ph -> X C_ Y ) |
4 |
|
clublem.maj |
|- ( ph -> ch ) |
5 |
1
|
a1d |
|- ( ph -> ( ( X C_ Y /\ ch ) -> Y e. _V ) ) |
6 |
2
|
cleq2lem |
|- ( x = Y -> ( ( X C_ x /\ ps ) <-> ( X C_ Y /\ ch ) ) ) |
7 |
6
|
elab3g |
|- ( ( ( X C_ Y /\ ch ) -> Y e. _V ) -> ( Y e. { x | ( X C_ x /\ ps ) } <-> ( X C_ Y /\ ch ) ) ) |
8 |
5 7
|
syl |
|- ( ph -> ( Y e. { x | ( X C_ x /\ ps ) } <-> ( X C_ Y /\ ch ) ) ) |
9 |
3 4 8
|
mpbir2and |
|- ( ph -> Y e. { x | ( X C_ x /\ ps ) } ) |
10 |
|
intss1 |
|- ( Y e. { x | ( X C_ x /\ ps ) } -> |^| { x | ( X C_ x /\ ps ) } C_ Y ) |
11 |
9 10
|
syl |
|- ( ph -> |^| { x | ( X C_ x /\ ps ) } C_ Y ) |