| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clublem.y |
|- ( ph -> Y e. _V ) |
| 2 |
|
clublem.sub |
|- ( x = Y -> ( ps <-> ch ) ) |
| 3 |
|
clublem.sup |
|- ( ph -> X C_ Y ) |
| 4 |
|
clublem.maj |
|- ( ph -> ch ) |
| 5 |
1
|
a1d |
|- ( ph -> ( ( X C_ Y /\ ch ) -> Y e. _V ) ) |
| 6 |
2
|
cleq2lem |
|- ( x = Y -> ( ( X C_ x /\ ps ) <-> ( X C_ Y /\ ch ) ) ) |
| 7 |
6
|
elab3g |
|- ( ( ( X C_ Y /\ ch ) -> Y e. _V ) -> ( Y e. { x | ( X C_ x /\ ps ) } <-> ( X C_ Y /\ ch ) ) ) |
| 8 |
5 7
|
syl |
|- ( ph -> ( Y e. { x | ( X C_ x /\ ps ) } <-> ( X C_ Y /\ ch ) ) ) |
| 9 |
3 4 8
|
mpbir2and |
|- ( ph -> Y e. { x | ( X C_ x /\ ps ) } ) |
| 10 |
|
intss1 |
|- ( Y e. { x | ( X C_ x /\ ps ) } -> |^| { x | ( X C_ x /\ ps ) } C_ Y ) |
| 11 |
9 10
|
syl |
|- ( ph -> |^| { x | ( X C_ x /\ ps ) } C_ Y ) |