Metamath Proof Explorer


Theorem clublem

Description: If a superset Y of X possesses the property parameterized in x in ps , then Y is a superset of the closure of that property for the set X . (Contributed by RP, 23-Jul-2020)

Ref Expression
Hypotheses clublem.y
|- ( ph -> Y e. _V )
clublem.sub
|- ( x = Y -> ( ps <-> ch ) )
clublem.sup
|- ( ph -> X C_ Y )
clublem.maj
|- ( ph -> ch )
Assertion clublem
|- ( ph -> |^| { x | ( X C_ x /\ ps ) } C_ Y )

Proof

Step Hyp Ref Expression
1 clublem.y
 |-  ( ph -> Y e. _V )
2 clublem.sub
 |-  ( x = Y -> ( ps <-> ch ) )
3 clublem.sup
 |-  ( ph -> X C_ Y )
4 clublem.maj
 |-  ( ph -> ch )
5 1 a1d
 |-  ( ph -> ( ( X C_ Y /\ ch ) -> Y e. _V ) )
6 2 cleq2lem
 |-  ( x = Y -> ( ( X C_ x /\ ps ) <-> ( X C_ Y /\ ch ) ) )
7 6 elab3g
 |-  ( ( ( X C_ Y /\ ch ) -> Y e. _V ) -> ( Y e. { x | ( X C_ x /\ ps ) } <-> ( X C_ Y /\ ch ) ) )
8 5 7 syl
 |-  ( ph -> ( Y e. { x | ( X C_ x /\ ps ) } <-> ( X C_ Y /\ ch ) ) )
9 3 4 8 mpbir2and
 |-  ( ph -> Y e. { x | ( X C_ x /\ ps ) } )
10 intss1
 |-  ( Y e. { x | ( X C_ x /\ ps ) } -> |^| { x | ( X C_ x /\ ps ) } C_ Y )
11 9 10 syl
 |-  ( ph -> |^| { x | ( X C_ x /\ ps ) } C_ Y )