Metamath Proof Explorer


Theorem clublem

Description: If a superset Y of X possesses the property parameterized in x in ps , then Y is a superset of the closure of that property for the set X . (Contributed by RP, 23-Jul-2020)

Ref Expression
Hypotheses clublem.y ( 𝜑𝑌 ∈ V )
clublem.sub ( 𝑥 = 𝑌 → ( 𝜓𝜒 ) )
clublem.sup ( 𝜑𝑋𝑌 )
clublem.maj ( 𝜑𝜒 )
Assertion clublem ( 𝜑 { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ⊆ 𝑌 )

Proof

Step Hyp Ref Expression
1 clublem.y ( 𝜑𝑌 ∈ V )
2 clublem.sub ( 𝑥 = 𝑌 → ( 𝜓𝜒 ) )
3 clublem.sup ( 𝜑𝑋𝑌 )
4 clublem.maj ( 𝜑𝜒 )
5 1 a1d ( 𝜑 → ( ( 𝑋𝑌𝜒 ) → 𝑌 ∈ V ) )
6 2 cleq2lem ( 𝑥 = 𝑌 → ( ( 𝑋𝑥𝜓 ) ↔ ( 𝑋𝑌𝜒 ) ) )
7 6 elab3g ( ( ( 𝑋𝑌𝜒 ) → 𝑌 ∈ V ) → ( 𝑌 ∈ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ↔ ( 𝑋𝑌𝜒 ) ) )
8 5 7 syl ( 𝜑 → ( 𝑌 ∈ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ↔ ( 𝑋𝑌𝜒 ) ) )
9 3 4 8 mpbir2and ( 𝜑𝑌 ∈ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } )
10 intss1 ( 𝑌 ∈ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } → { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ⊆ 𝑌 )
11 9 10 syl ( 𝜑 { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } ⊆ 𝑌 )