Step |
Hyp |
Ref |
Expression |
1 |
|
clublem.y |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
2 |
|
clublem.sub |
⊢ ( 𝑥 = 𝑌 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
clublem.sup |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
4 |
|
clublem.maj |
⊢ ( 𝜑 → 𝜒 ) |
5 |
1
|
a1d |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝑌 ∧ 𝜒 ) → 𝑌 ∈ V ) ) |
6 |
2
|
cleq2lem |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝜒 ) ) ) |
7 |
6
|
elab3g |
⊢ ( ( ( 𝑋 ⊆ 𝑌 ∧ 𝜒 ) → 𝑌 ∈ V ) → ( 𝑌 ∈ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝜒 ) ) ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ↔ ( 𝑋 ⊆ 𝑌 ∧ 𝜒 ) ) ) |
9 |
3 4 8
|
mpbir2and |
⊢ ( 𝜑 → 𝑌 ∈ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ) |
10 |
|
intss1 |
⊢ ( 𝑌 ∈ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } → ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ⊆ 𝑌 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ⊆ 𝑌 ) |