Metamath Proof Explorer


Theorem clublem

Description: If a superset Y of X possesses the property parameterized in x in ps , then Y is a superset of the closure of that property for the set X . (Contributed by RP, 23-Jul-2020)

Ref Expression
Hypotheses clublem.y φ Y V
clublem.sub x = Y ψ χ
clublem.sup φ X Y
clublem.maj φ χ
Assertion clublem φ x | X x ψ Y

Proof

Step Hyp Ref Expression
1 clublem.y φ Y V
2 clublem.sub x = Y ψ χ
3 clublem.sup φ X Y
4 clublem.maj φ χ
5 1 a1d φ X Y χ Y V
6 2 cleq2lem x = Y X x ψ X Y χ
7 6 elab3g X Y χ Y V Y x | X x ψ X Y χ
8 5 7 syl φ Y x | X x ψ X Y χ
9 3 4 8 mpbir2and φ Y x | X x ψ
10 intss1 Y x | X x ψ x | X x ψ Y
11 9 10 syl φ x | X x ψ Y