Metamath Proof Explorer


Theorem clss2lem

Description: The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020)

Ref Expression
Hypothesis clss2lem.1 φ χ ψ
Assertion clss2lem φ x | X x ψ x | X x χ

Proof

Step Hyp Ref Expression
1 clss2lem.1 φ χ ψ
2 1 adantld φ X x χ ψ
3 2 alrimiv φ x X x χ ψ
4 pm5.3 X x χ ψ X x χ X x ψ
5 4 albii x X x χ ψ x X x χ X x ψ
6 ss2ab x | X x χ x | X x ψ x X x χ X x ψ
7 5 6 bitr4i x X x χ ψ x | X x χ x | X x ψ
8 3 7 sylib φ x | X x χ x | X x ψ
9 intss x | X x χ x | X x ψ x | X x ψ x | X x χ
10 8 9 syl φ x | X x ψ x | X x χ