Metamath Proof Explorer


Theorem intss

Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion intss A B B A

Proof

Step Hyp Ref Expression
1 ssralv A B x B y x x A y x
2 1 ss2abdv A B y | x B y x y | x A y x
3 dfint2 B = y | x B y x
4 dfint2 A = y | x A y x
5 2 3 4 3sstr4g A B B A