Metamath Proof Explorer


Theorem dfint2

Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion dfint2 A=x|yAxy

Proof

Step Hyp Ref Expression
1 df-int A=x|yyAxy
2 df-ral yAxyyyAxy
3 2 abbii x|yAxy=x|yyAxy
4 1 3 eqtr4i A=x|yAxy