Metamath Proof Explorer


Theorem dfid7

Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020)

Ref Expression
Assertion dfid7 I = x V y | x y

Proof

Step Hyp Ref Expression
1 dfid4 I = x V x
2 ancom x y x y
3 truan x y x y
4 2 3 bitri x y x y
5 4 abbii y | x y = y | x y
6 5 inteqi y | x y = y | x y
7 vex x V
8 7 intmin2 y | x y = x
9 6 8 eqtri y | x y = x
10 9 mpteq2i x V y | x y = x V x
11 1 10 eqtr4i I = x V y | x y