Metamath Proof Explorer


Theorem dfid7

Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020)

Ref Expression
Assertion dfid7 I = ( 𝑥 ∈ V ↦ { 𝑦 ∣ ( 𝑥𝑦 ∧ ⊤ ) } )

Proof

Step Hyp Ref Expression
1 dfid4 I = ( 𝑥 ∈ V ↦ 𝑥 )
2 ancom ( ( 𝑥𝑦 ∧ ⊤ ) ↔ ( ⊤ ∧ 𝑥𝑦 ) )
3 truan ( ( ⊤ ∧ 𝑥𝑦 ) ↔ 𝑥𝑦 )
4 2 3 bitri ( ( 𝑥𝑦 ∧ ⊤ ) ↔ 𝑥𝑦 )
5 4 abbii { 𝑦 ∣ ( 𝑥𝑦 ∧ ⊤ ) } = { 𝑦𝑥𝑦 }
6 5 inteqi { 𝑦 ∣ ( 𝑥𝑦 ∧ ⊤ ) } = { 𝑦𝑥𝑦 }
7 vex 𝑥 ∈ V
8 7 intmin2 { 𝑦𝑥𝑦 } = 𝑥
9 6 8 eqtri { 𝑦 ∣ ( 𝑥𝑦 ∧ ⊤ ) } = 𝑥
10 9 mpteq2i ( 𝑥 ∈ V ↦ { 𝑦 ∣ ( 𝑥𝑦 ∧ ⊤ ) } ) = ( 𝑥 ∈ V ↦ 𝑥 )
11 1 10 eqtr4i I = ( 𝑥 ∈ V ↦ { 𝑦 ∣ ( 𝑥𝑦 ∧ ⊤ ) } )