Description: Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfid7 | ⊢ I = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfid4 | ⊢ I = ( 𝑥 ∈ V ↦ 𝑥 ) | |
| 2 | ancom | ⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) ↔ ( ⊤ ∧ 𝑥 ⊆ 𝑦 ) ) | |
| 3 | truan | ⊢ ( ( ⊤ ∧ 𝑥 ⊆ 𝑦 ) ↔ 𝑥 ⊆ 𝑦 ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) ↔ 𝑥 ⊆ 𝑦 ) |
| 5 | 4 | abbii | ⊢ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) } = { 𝑦 ∣ 𝑥 ⊆ 𝑦 } |
| 6 | 5 | inteqi | ⊢ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) } = ∩ { 𝑦 ∣ 𝑥 ⊆ 𝑦 } |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | intmin2 | ⊢ ∩ { 𝑦 ∣ 𝑥 ⊆ 𝑦 } = 𝑥 |
| 9 | 6 8 | eqtri | ⊢ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) } = 𝑥 |
| 10 | 9 | mpteq2i | ⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) } ) = ( 𝑥 ∈ V ↦ 𝑥 ) |
| 11 | 1 10 | eqtr4i | ⊢ I = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ⊤ ) } ) |