Step |
Hyp |
Ref |
Expression |
1 |
|
mptrcllem.ex1 |
⊢ ( 𝑥 ∈ 𝑉 → ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∈ V ) |
2 |
|
mptrcllem.ex2 |
⊢ ( 𝑥 ∈ 𝑉 → ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } ∈ V ) |
3 |
|
mptrcllem.hyp1 |
⊢ ( 𝑥 ∈ 𝑉 → 𝜒 ) |
4 |
|
mptrcllem.hyp2 |
⊢ ( 𝑥 ∈ 𝑉 → 𝜃 ) |
5 |
|
mptrcllem.hyp3 |
⊢ ( 𝑥 ∈ 𝑉 → 𝜏 ) |
6 |
|
mptrcllem.sub1 |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } → ( 𝜑 ↔ 𝜒 ) ) |
7 |
|
mptrcllem.sub2 |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ↔ 𝜃 ) ) |
8 |
|
mptrcllem.sub3 |
⊢ ( 𝑧 = ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } → ( 𝜓 ↔ 𝜏 ) ) |
9 |
6 7
|
anbi12d |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } → ( ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
10 |
|
id |
⊢ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ) |
11 |
10
|
unssad |
⊢ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 → 𝑥 ⊆ 𝑧 ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) → 𝑥 ⊆ 𝑧 ) |
13 |
12
|
a1i |
⊢ ( 𝑥 ∈ 𝑉 → ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) → 𝑥 ⊆ 𝑧 ) ) |
14 |
13
|
alrimiv |
⊢ ( 𝑥 ∈ 𝑉 → ∀ 𝑧 ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) → 𝑥 ⊆ 𝑧 ) ) |
15 |
|
ssintab |
⊢ ( 𝑥 ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } ↔ ∀ 𝑧 ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) → 𝑥 ⊆ 𝑧 ) ) |
16 |
14 15
|
sylibr |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } ) |
17 |
3 4
|
jca |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝜒 ∧ 𝜃 ) ) |
18 |
2 9 16 17
|
clublem |
⊢ ( 𝑥 ∈ 𝑉 → ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } ) |
19 |
|
simpl |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → 𝑥 ⊆ 𝑦 ) |
20 |
|
dmss |
⊢ ( 𝑥 ⊆ 𝑦 → dom 𝑥 ⊆ dom 𝑦 ) |
21 |
|
rnss |
⊢ ( 𝑥 ⊆ 𝑦 → ran 𝑥 ⊆ ran 𝑦 ) |
22 |
20 21
|
jca |
⊢ ( 𝑥 ⊆ 𝑦 → ( dom 𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦 ) ) |
23 |
|
unss12 |
⊢ ( ( dom 𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦 ) → ( dom 𝑥 ∪ ran 𝑥 ) ⊆ ( dom 𝑦 ∪ ran 𝑦 ) ) |
24 |
|
ssres2 |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ⊆ ( dom 𝑦 ∪ ran 𝑦 ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ) |
25 |
22 23 24
|
3syl |
⊢ ( 𝑥 ⊆ 𝑦 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ) |
27 |
|
simprr |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) |
28 |
26 27
|
sstrd |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 ) |
29 |
19 28
|
jca |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 ) ) |
30 |
29
|
a1i |
⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 ) ) ) |
31 |
|
unss |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 ) ↔ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 ) |
32 |
30 31
|
syl6ib |
⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 ) ) |
33 |
32
|
alrimiv |
⊢ ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 ) ) |
34 |
|
ssintab |
⊢ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ↔ ∀ 𝑦 ( ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 ) ) |
35 |
33 34
|
sylibr |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) |
36 |
1 8 35 5
|
clublem |
⊢ ( 𝑥 ∈ 𝑉 → ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } ⊆ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) |
37 |
18 36
|
eqssd |
⊢ ( 𝑥 ∈ 𝑉 → ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } ) |
38 |
37
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝑉 ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) = ( 𝑥 ∈ 𝑉 ↦ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ 𝜓 ) } ) |