Metamath Proof Explorer


Theorem mptrcllem

Description: Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020)

Ref Expression
Hypotheses mptrcllem.ex1 ( 𝑥𝑉 { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∈ V )
mptrcllem.ex2 ( 𝑥𝑉 { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } ∈ V )
mptrcllem.hyp1 ( 𝑥𝑉𝜒 )
mptrcllem.hyp2 ( 𝑥𝑉𝜃 )
mptrcllem.hyp3 ( 𝑥𝑉𝜏 )
mptrcllem.sub1 ( 𝑦 = { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } → ( 𝜑𝜒 ) )
mptrcllem.sub2 ( 𝑦 = { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦𝜃 ) )
mptrcllem.sub3 ( 𝑧 = { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } → ( 𝜓𝜏 ) )
Assertion mptrcllem ( 𝑥𝑉 { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) = ( 𝑥𝑉 { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } )

Proof

Step Hyp Ref Expression
1 mptrcllem.ex1 ( 𝑥𝑉 { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∈ V )
2 mptrcllem.ex2 ( 𝑥𝑉 { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } ∈ V )
3 mptrcllem.hyp1 ( 𝑥𝑉𝜒 )
4 mptrcllem.hyp2 ( 𝑥𝑉𝜃 )
5 mptrcllem.hyp3 ( 𝑥𝑉𝜏 )
6 mptrcllem.sub1 ( 𝑦 = { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } → ( 𝜑𝜒 ) )
7 mptrcllem.sub2 ( 𝑦 = { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦𝜃 ) )
8 mptrcllem.sub3 ( 𝑧 = { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } → ( 𝜓𝜏 ) )
9 6 7 anbi12d ( 𝑦 = { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } → ( ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ↔ ( 𝜒𝜃 ) ) )
10 id ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 )
11 10 unssad ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝑥𝑧 )
12 11 adantr ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) → 𝑥𝑧 )
13 12 a1i ( 𝑥𝑉 → ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) → 𝑥𝑧 ) )
14 13 alrimiv ( 𝑥𝑉 → ∀ 𝑧 ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) → 𝑥𝑧 ) )
15 ssintab ( 𝑥 { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } ↔ ∀ 𝑧 ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) → 𝑥𝑧 ) )
16 14 15 sylibr ( 𝑥𝑉𝑥 { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } )
17 3 4 jca ( 𝑥𝑉 → ( 𝜒𝜃 ) )
18 2 9 16 17 clublem ( 𝑥𝑉 { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ⊆ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } )
19 simpl ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → 𝑥𝑦 )
20 dmss ( 𝑥𝑦 → dom 𝑥 ⊆ dom 𝑦 )
21 rnss ( 𝑥𝑦 → ran 𝑥 ⊆ ran 𝑦 )
22 20 21 jca ( 𝑥𝑦 → ( dom 𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦 ) )
23 unss12 ( ( dom 𝑥 ⊆ dom 𝑦 ∧ ran 𝑥 ⊆ ran 𝑦 ) → ( dom 𝑥 ∪ ran 𝑥 ) ⊆ ( dom 𝑦 ∪ ran 𝑦 ) )
24 ssres2 ( ( dom 𝑥 ∪ ran 𝑥 ) ⊆ ( dom 𝑦 ∪ ran 𝑦 ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) )
25 22 23 24 3syl ( 𝑥𝑦 → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) )
26 25 adantr ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) )
27 simprr ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 )
28 26 27 sstrd ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 )
29 19 28 jca ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥𝑦 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 ) )
30 29 a1i ( 𝑥𝑉 → ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥𝑦 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 ) ) )
31 unss ( ( 𝑥𝑦 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑦 ) ↔ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 )
32 30 31 syl6ib ( 𝑥𝑉 → ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 ) )
33 32 alrimiv ( 𝑥𝑉 → ∀ 𝑦 ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 ) )
34 ssintab ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ↔ ∀ 𝑦 ( ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑦 ) )
35 33 34 sylibr ( 𝑥𝑉 → ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } )
36 1 8 35 5 clublem ( 𝑥𝑉 { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } ⊆ { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } )
37 18 36 eqssd ( 𝑥𝑉 { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } = { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } )
38 37 mpteq2ia ( 𝑥𝑉 { 𝑦 ∣ ( 𝑥𝑦 ∧ ( 𝜑 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) = ( 𝑥𝑉 { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧𝜓 ) } )