Metamath Proof Explorer


Theorem cotrintab

Description: The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020)

Ref Expression
Hypothesis cotrintab.min ( 𝜑 → ( 𝑥𝑥 ) ⊆ 𝑥 )
Assertion cotrintab ( { 𝑥𝜑 } ∘ { 𝑥𝜑 } ) ⊆ { 𝑥𝜑 }

Proof

Step Hyp Ref Expression
1 cotrintab.min ( 𝜑 → ( 𝑥𝑥 ) ⊆ 𝑥 )
2 cotr ( ( { 𝑥𝜑 } ∘ { 𝑥𝜑 } ) ⊆ { 𝑥𝜑 } ↔ ∀ 𝑢𝑤𝑣 ( ( 𝑢 { 𝑥𝜑 } 𝑤𝑤 { 𝑥𝜑 } 𝑣 ) → 𝑢 { 𝑥𝜑 } 𝑣 ) )
3 pm3.43 ( ( ( 𝜑𝑢 𝑥 𝑤 ) ∧ ( 𝜑𝑤 𝑥 𝑣 ) ) → ( 𝜑 → ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) ) )
4 cotr ( ( 𝑥𝑥 ) ⊆ 𝑥 ↔ ∀ 𝑢𝑤𝑣 ( ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) → 𝑢 𝑥 𝑣 ) )
5 4 biimpi ( ( 𝑥𝑥 ) ⊆ 𝑥 → ∀ 𝑢𝑤𝑣 ( ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) → 𝑢 𝑥 𝑣 ) )
6 2sp ( ∀ 𝑤𝑣 ( ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) → 𝑢 𝑥 𝑣 ) → ( ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) → 𝑢 𝑥 𝑣 ) )
7 6 sps ( ∀ 𝑢𝑤𝑣 ( ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) → 𝑢 𝑥 𝑣 ) → ( ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) → 𝑢 𝑥 𝑣 ) )
8 1 5 7 3syl ( 𝜑 → ( ( 𝑢 𝑥 𝑤𝑤 𝑥 𝑣 ) → 𝑢 𝑥 𝑣 ) )
9 3 8 sylcom ( ( ( 𝜑𝑢 𝑥 𝑤 ) ∧ ( 𝜑𝑤 𝑥 𝑣 ) ) → ( 𝜑𝑢 𝑥 𝑣 ) )
10 9 alanimi ( ( ∀ 𝑥 ( 𝜑𝑢 𝑥 𝑤 ) ∧ ∀ 𝑥 ( 𝜑𝑤 𝑥 𝑣 ) ) → ∀ 𝑥 ( 𝜑𝑢 𝑥 𝑣 ) )
11 opex 𝑢 , 𝑤 ⟩ ∈ V
12 11 elintab ( ⟨ 𝑢 , 𝑤 ⟩ ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝑢 , 𝑤 ⟩ ∈ 𝑥 ) )
13 df-br ( 𝑢 { 𝑥𝜑 } 𝑤 ↔ ⟨ 𝑢 , 𝑤 ⟩ ∈ { 𝑥𝜑 } )
14 df-br ( 𝑢 𝑥 𝑤 ↔ ⟨ 𝑢 , 𝑤 ⟩ ∈ 𝑥 )
15 14 imbi2i ( ( 𝜑𝑢 𝑥 𝑤 ) ↔ ( 𝜑 → ⟨ 𝑢 , 𝑤 ⟩ ∈ 𝑥 ) )
16 15 albii ( ∀ 𝑥 ( 𝜑𝑢 𝑥 𝑤 ) ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝑢 , 𝑤 ⟩ ∈ 𝑥 ) )
17 12 13 16 3bitr4i ( 𝑢 { 𝑥𝜑 } 𝑤 ↔ ∀ 𝑥 ( 𝜑𝑢 𝑥 𝑤 ) )
18 opex 𝑤 , 𝑣 ⟩ ∈ V
19 18 elintab ( ⟨ 𝑤 , 𝑣 ⟩ ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝑤 , 𝑣 ⟩ ∈ 𝑥 ) )
20 df-br ( 𝑤 { 𝑥𝜑 } 𝑣 ↔ ⟨ 𝑤 , 𝑣 ⟩ ∈ { 𝑥𝜑 } )
21 df-br ( 𝑤 𝑥 𝑣 ↔ ⟨ 𝑤 , 𝑣 ⟩ ∈ 𝑥 )
22 21 imbi2i ( ( 𝜑𝑤 𝑥 𝑣 ) ↔ ( 𝜑 → ⟨ 𝑤 , 𝑣 ⟩ ∈ 𝑥 ) )
23 22 albii ( ∀ 𝑥 ( 𝜑𝑤 𝑥 𝑣 ) ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝑤 , 𝑣 ⟩ ∈ 𝑥 ) )
24 19 20 23 3bitr4i ( 𝑤 { 𝑥𝜑 } 𝑣 ↔ ∀ 𝑥 ( 𝜑𝑤 𝑥 𝑣 ) )
25 17 24 anbi12i ( ( 𝑢 { 𝑥𝜑 } 𝑤𝑤 { 𝑥𝜑 } 𝑣 ) ↔ ( ∀ 𝑥 ( 𝜑𝑢 𝑥 𝑤 ) ∧ ∀ 𝑥 ( 𝜑𝑤 𝑥 𝑣 ) ) )
26 opex 𝑢 , 𝑣 ⟩ ∈ V
27 26 elintab ( ⟨ 𝑢 , 𝑣 ⟩ ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝑢 , 𝑣 ⟩ ∈ 𝑥 ) )
28 df-br ( 𝑢 { 𝑥𝜑 } 𝑣 ↔ ⟨ 𝑢 , 𝑣 ⟩ ∈ { 𝑥𝜑 } )
29 df-br ( 𝑢 𝑥 𝑣 ↔ ⟨ 𝑢 , 𝑣 ⟩ ∈ 𝑥 )
30 29 imbi2i ( ( 𝜑𝑢 𝑥 𝑣 ) ↔ ( 𝜑 → ⟨ 𝑢 , 𝑣 ⟩ ∈ 𝑥 ) )
31 30 albii ( ∀ 𝑥 ( 𝜑𝑢 𝑥 𝑣 ) ↔ ∀ 𝑥 ( 𝜑 → ⟨ 𝑢 , 𝑣 ⟩ ∈ 𝑥 ) )
32 27 28 31 3bitr4i ( 𝑢 { 𝑥𝜑 } 𝑣 ↔ ∀ 𝑥 ( 𝜑𝑢 𝑥 𝑣 ) )
33 10 25 32 3imtr4i ( ( 𝑢 { 𝑥𝜑 } 𝑤𝑤 { 𝑥𝜑 } 𝑣 ) → 𝑢 { 𝑥𝜑 } 𝑣 )
34 33 gen2 𝑤𝑣 ( ( 𝑢 { 𝑥𝜑 } 𝑤𝑤 { 𝑥𝜑 } 𝑣 ) → 𝑢 { 𝑥𝜑 } 𝑣 )
35 2 34 mpgbir ( { 𝑥𝜑 } ∘ { 𝑥𝜑 } ) ⊆ { 𝑥𝜑 }