Metamath Proof Explorer


Theorem cotrintab

Description: The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020)

Ref Expression
Hypothesis cotrintab.min φ x x x
Assertion cotrintab x | φ x | φ x | φ

Proof

Step Hyp Ref Expression
1 cotrintab.min φ x x x
2 cotr x | φ x | φ x | φ u w v u x | φ w w x | φ v u x | φ v
3 pm3.43 φ u x w φ w x v φ u x w w x v
4 cotr x x x u w v u x w w x v u x v
5 4 biimpi x x x u w v u x w w x v u x v
6 2sp w v u x w w x v u x v u x w w x v u x v
7 6 sps u w v u x w w x v u x v u x w w x v u x v
8 1 5 7 3syl φ u x w w x v u x v
9 3 8 sylcom φ u x w φ w x v φ u x v
10 9 alanimi x φ u x w x φ w x v x φ u x v
11 opex u w V
12 11 elintab u w x | φ x φ u w x
13 df-br u x | φ w u w x | φ
14 df-br u x w u w x
15 14 imbi2i φ u x w φ u w x
16 15 albii x φ u x w x φ u w x
17 12 13 16 3bitr4i u x | φ w x φ u x w
18 opex w v V
19 18 elintab w v x | φ x φ w v x
20 df-br w x | φ v w v x | φ
21 df-br w x v w v x
22 21 imbi2i φ w x v φ w v x
23 22 albii x φ w x v x φ w v x
24 19 20 23 3bitr4i w x | φ v x φ w x v
25 17 24 anbi12i u x | φ w w x | φ v x φ u x w x φ w x v
26 opex u v V
27 26 elintab u v x | φ x φ u v x
28 df-br u x | φ v u v x | φ
29 df-br u x v u v x
30 29 imbi2i φ u x v φ u v x
31 30 albii x φ u x v x φ u v x
32 27 28 31 3bitr4i u x | φ v x φ u x v
33 10 25 32 3imtr4i u x | φ w w x | φ v u x | φ v
34 33 gen2 w v u x | φ w w x | φ v u x | φ v
35 2 34 mpgbir x | φ x | φ x | φ