| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rclexi.1 |
⊢ 𝐴 ∈ 𝑉 |
| 2 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 3 |
|
dmun |
⊢ dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) = ( dom 𝐴 ∪ dom ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 4 |
|
dmresi |
⊢ dom ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 5 |
4
|
uneq2i |
⊢ ( dom 𝐴 ∪ dom ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) = ( dom 𝐴 ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) |
| 6 |
|
ssun1 |
⊢ dom 𝐴 ⊆ ( dom 𝐴 ∪ ran 𝐴 ) |
| 7 |
|
ssequn1 |
⊢ ( dom 𝐴 ⊆ ( dom 𝐴 ∪ ran 𝐴 ) ↔ ( dom 𝐴 ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( dom 𝐴 ∪ ran 𝐴 ) ) |
| 8 |
6 7
|
mpbi |
⊢ ( dom 𝐴 ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 9 |
3 5 8
|
3eqtri |
⊢ dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 10 |
|
rnun |
⊢ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) = ( ran 𝐴 ∪ ran ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 11 |
|
rnresi |
⊢ ran ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 12 |
11
|
uneq2i |
⊢ ( ran 𝐴 ∪ ran ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) = ( ran 𝐴 ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) |
| 13 |
|
ssun2 |
⊢ ran 𝐴 ⊆ ( dom 𝐴 ∪ ran 𝐴 ) |
| 14 |
|
ssequn1 |
⊢ ( ran 𝐴 ⊆ ( dom 𝐴 ∪ ran 𝐴 ) ↔ ( ran 𝐴 ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( dom 𝐴 ∪ ran 𝐴 ) ) |
| 15 |
13 14
|
mpbi |
⊢ ( ran 𝐴 ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 16 |
10 12 15
|
3eqtri |
⊢ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 17 |
9 16
|
uneq12i |
⊢ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) = ( ( dom 𝐴 ∪ ran 𝐴 ) ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) |
| 18 |
|
unidm |
⊢ ( ( dom 𝐴 ∪ ran 𝐴 ) ∪ ( dom 𝐴 ∪ ran 𝐴 ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 19 |
17 18
|
eqtri |
⊢ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) = ( dom 𝐴 ∪ ran 𝐴 ) |
| 20 |
19
|
reseq2i |
⊢ ( I ↾ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) = ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) |
| 21 |
|
ssun2 |
⊢ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 22 |
20 21
|
eqsstri |
⊢ ( I ↾ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 23 |
1
|
elexi |
⊢ 𝐴 ∈ V |
| 24 |
|
dmexg |
⊢ ( 𝐴 ∈ 𝑉 → dom 𝐴 ∈ V ) |
| 25 |
|
rnexg |
⊢ ( 𝐴 ∈ 𝑉 → ran 𝐴 ∈ V ) |
| 26 |
24 25
|
unexd |
⊢ ( 𝐴 ∈ 𝑉 → ( dom 𝐴 ∪ ran 𝐴 ) ∈ V ) |
| 27 |
26
|
resiexd |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ∈ V ) |
| 28 |
1 27
|
ax-mp |
⊢ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ∈ V |
| 29 |
23 28
|
unex |
⊢ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∈ V |
| 30 |
|
dmeq |
⊢ ( 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) → dom 𝑥 = dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) |
| 31 |
|
rneq |
⊢ ( 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) → ran 𝑥 = ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) |
| 32 |
30 31
|
uneq12d |
⊢ ( 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) → ( dom 𝑥 ∪ ran 𝑥 ) = ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) |
| 33 |
32
|
reseq2d |
⊢ ( 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( I ↾ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) ) |
| 34 |
|
id |
⊢ ( 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) → 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) |
| 35 |
33 34
|
sseq12d |
⊢ ( 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) → ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ↔ ( I ↾ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) |
| 36 |
35
|
cleq2lem |
⊢ ( 𝑥 = ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) → ( ( 𝐴 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) ↔ ( 𝐴 ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∧ ( I ↾ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) ) |
| 37 |
29 36
|
spcev |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∧ ( I ↾ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) ) |
| 38 |
|
intexab |
⊢ ( ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) ↔ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) } ∈ V ) |
| 39 |
37 38
|
sylib |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∧ ( I ↾ ( dom ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ∪ ran ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) ) ⊆ ( 𝐴 ∪ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) ) → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) } ∈ V ) |
| 40 |
2 22 39
|
mp2an |
⊢ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑥 ) } ∈ V |