Metamath Proof Explorer


Theorem ssequn1

Description: A relationship between subclass and union. Theorem 26 of Suppes p. 27. (Contributed by NM, 30-Aug-1993) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssequn1 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 bicom ( ( 𝑥𝐵 ↔ ( 𝑥𝐴𝑥𝐵 ) ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥𝐵 ) )
2 pm4.72 ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐵 ↔ ( 𝑥𝐴𝑥𝐵 ) ) )
3 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
4 3 bibi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ 𝑥𝐵 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥𝐵 ) )
5 1 2 4 3bitr4i ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ 𝑥𝐵 ) )
6 5 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ 𝑥𝐵 ) )
7 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
8 dfcleq ( ( 𝐴𝐵 ) = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ 𝑥𝐵 ) )
9 6 7 8 3bitr4i ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐵 )