Metamath Proof Explorer


Theorem pm4.72

Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of WhiteheadRussell p. 121. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 30-Jan-2013)

Ref Expression
Assertion pm4.72 ( ( 𝜑𝜓 ) ↔ ( 𝜓 ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 olc ( 𝜓 → ( 𝜑𝜓 ) )
2 pm2.621 ( ( 𝜑𝜓 ) → ( ( 𝜑𝜓 ) → 𝜓 ) )
3 1 2 impbid2 ( ( 𝜑𝜓 ) → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
4 orc ( 𝜑 → ( 𝜑𝜓 ) )
5 biimpr ( ( 𝜓 ↔ ( 𝜑𝜓 ) ) → ( ( 𝜑𝜓 ) → 𝜓 ) )
6 4 5 syl5 ( ( 𝜓 ↔ ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )
7 3 6 impbii ( ( 𝜑𝜓 ) ↔ ( 𝜓 ↔ ( 𝜑𝜓 ) ) )