Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of WhiteheadRussell p. 121. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 30-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.72 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
2 | pm2.621 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
3 | 1 2 | impbid2 | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
4 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) | |
5 | biimpr | ⊢ ( ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
6 | 4 5 | syl5 | ⊢ ( ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |
7 | 3 6 | impbii | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |