Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of WhiteheadRussell p. 121. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 30-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.72 | |- ( ( ph -> ps ) <-> ( ps <-> ( ph \/ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc | |- ( ps -> ( ph \/ ps ) ) |
|
2 | pm2.621 | |- ( ( ph -> ps ) -> ( ( ph \/ ps ) -> ps ) ) |
|
3 | 1 2 | impbid2 | |- ( ( ph -> ps ) -> ( ps <-> ( ph \/ ps ) ) ) |
4 | orc | |- ( ph -> ( ph \/ ps ) ) |
|
5 | biimpr | |- ( ( ps <-> ( ph \/ ps ) ) -> ( ( ph \/ ps ) -> ps ) ) |
|
6 | 4 5 | syl5 | |- ( ( ps <-> ( ph \/ ps ) ) -> ( ph -> ps ) ) |
7 | 3 6 | impbii | |- ( ( ph -> ps ) <-> ( ps <-> ( ph \/ ps ) ) ) |