Metamath Proof Explorer


Theorem ssequn1

Description: A relationship between subclass and union. Theorem 26 of Suppes p. 27. (Contributed by NM, 30-Aug-1993) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssequn1 ABAB=B

Proof

Step Hyp Ref Expression
1 bicom xBxAxBxAxBxB
2 pm4.72 xAxBxBxAxB
3 elun xABxAxB
4 3 bibi1i xABxBxAxBxB
5 1 2 4 3bitr4i xAxBxABxB
6 5 albii xxAxBxxABxB
7 dfss2 ABxxAxB
8 dfcleq AB=BxxABxB
9 6 7 8 3bitr4i ABAB=B