Step |
Hyp |
Ref |
Expression |
1 |
|
rclexi.1 |
|- A e. V |
2 |
|
ssun1 |
|- A C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) |
3 |
|
dmun |
|- dom ( A u. ( _I |` ( dom A u. ran A ) ) ) = ( dom A u. dom ( _I |` ( dom A u. ran A ) ) ) |
4 |
|
dmresi |
|- dom ( _I |` ( dom A u. ran A ) ) = ( dom A u. ran A ) |
5 |
4
|
uneq2i |
|- ( dom A u. dom ( _I |` ( dom A u. ran A ) ) ) = ( dom A u. ( dom A u. ran A ) ) |
6 |
|
ssun1 |
|- dom A C_ ( dom A u. ran A ) |
7 |
|
ssequn1 |
|- ( dom A C_ ( dom A u. ran A ) <-> ( dom A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) ) |
8 |
6 7
|
mpbi |
|- ( dom A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
9 |
3 5 8
|
3eqtri |
|- dom ( A u. ( _I |` ( dom A u. ran A ) ) ) = ( dom A u. ran A ) |
10 |
|
rnun |
|- ran ( A u. ( _I |` ( dom A u. ran A ) ) ) = ( ran A u. ran ( _I |` ( dom A u. ran A ) ) ) |
11 |
|
rnresi |
|- ran ( _I |` ( dom A u. ran A ) ) = ( dom A u. ran A ) |
12 |
11
|
uneq2i |
|- ( ran A u. ran ( _I |` ( dom A u. ran A ) ) ) = ( ran A u. ( dom A u. ran A ) ) |
13 |
|
ssun2 |
|- ran A C_ ( dom A u. ran A ) |
14 |
|
ssequn1 |
|- ( ran A C_ ( dom A u. ran A ) <-> ( ran A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) ) |
15 |
13 14
|
mpbi |
|- ( ran A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
16 |
10 12 15
|
3eqtri |
|- ran ( A u. ( _I |` ( dom A u. ran A ) ) ) = ( dom A u. ran A ) |
17 |
9 16
|
uneq12i |
|- ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) = ( ( dom A u. ran A ) u. ( dom A u. ran A ) ) |
18 |
|
unidm |
|- ( ( dom A u. ran A ) u. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
19 |
17 18
|
eqtri |
|- ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) = ( dom A u. ran A ) |
20 |
19
|
reseq2i |
|- ( _I |` ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) = ( _I |` ( dom A u. ran A ) ) |
21 |
|
ssun2 |
|- ( _I |` ( dom A u. ran A ) ) C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) |
22 |
20 21
|
eqsstri |
|- ( _I |` ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) |
23 |
1
|
elexi |
|- A e. _V |
24 |
|
dmexg |
|- ( A e. V -> dom A e. _V ) |
25 |
|
rnexg |
|- ( A e. V -> ran A e. _V ) |
26 |
|
unexg |
|- ( ( dom A e. _V /\ ran A e. _V ) -> ( dom A u. ran A ) e. _V ) |
27 |
24 25 26
|
syl2anc |
|- ( A e. V -> ( dom A u. ran A ) e. _V ) |
28 |
27
|
resiexd |
|- ( A e. V -> ( _I |` ( dom A u. ran A ) ) e. _V ) |
29 |
1 28
|
ax-mp |
|- ( _I |` ( dom A u. ran A ) ) e. _V |
30 |
23 29
|
unex |
|- ( A u. ( _I |` ( dom A u. ran A ) ) ) e. _V |
31 |
|
dmeq |
|- ( x = ( A u. ( _I |` ( dom A u. ran A ) ) ) -> dom x = dom ( A u. ( _I |` ( dom A u. ran A ) ) ) ) |
32 |
|
rneq |
|- ( x = ( A u. ( _I |` ( dom A u. ran A ) ) ) -> ran x = ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) |
33 |
31 32
|
uneq12d |
|- ( x = ( A u. ( _I |` ( dom A u. ran A ) ) ) -> ( dom x u. ran x ) = ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) |
34 |
33
|
reseq2d |
|- ( x = ( A u. ( _I |` ( dom A u. ran A ) ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) ) |
35 |
|
id |
|- ( x = ( A u. ( _I |` ( dom A u. ran A ) ) ) -> x = ( A u. ( _I |` ( dom A u. ran A ) ) ) ) |
36 |
34 35
|
sseq12d |
|- ( x = ( A u. ( _I |` ( dom A u. ran A ) ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) |
37 |
36
|
cleq2lem |
|- ( x = ( A u. ( _I |` ( dom A u. ran A ) ) ) -> ( ( A C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) <-> ( A C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) ) |
38 |
30 37
|
spcev |
|- ( ( A C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) ) -> E. x ( A C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) |
39 |
|
intexab |
|- ( E. x ( A C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) <-> |^| { x | ( A C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) } e. _V ) |
40 |
38 39
|
sylib |
|- ( ( A C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( _I |` ( dom A u. ran A ) ) ) u. ran ( A u. ( _I |` ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( _I |` ( dom A u. ran A ) ) ) ) -> |^| { x | ( A C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) } e. _V ) |
41 |
2 22 40
|
mp2an |
|- |^| { x | ( A C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) } e. _V |