Description: Subclass relationship for union of classes. Theorem 25 of Suppes p. 27. (Contributed by NM, 5-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | ssun1 | |- A C_ ( A u. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | |- ( x e. A -> ( x e. A \/ x e. B ) ) |
|
2 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
3 | 1 2 | sylibr | |- ( x e. A -> x e. ( A u. B ) ) |
4 | 3 | ssriv | |- A C_ ( A u. B ) |