Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sseq1d.1 | |- ( ph -> A = B ) | |
| sseq12d.2 | |- ( ph -> C = D ) | ||
| Assertion | sseq12d | |- ( ph -> ( A C_ C <-> B C_ D ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq1d.1 | |- ( ph -> A = B ) | |
| 2 | sseq12d.2 | |- ( ph -> C = D ) | |
| 3 | 1 | sseq1d | |- ( ph -> ( A C_ C <-> B C_ C ) ) | 
| 4 | 2 | sseq2d | |- ( ph -> ( B C_ C <-> B C_ D ) ) | 
| 5 | 3 4 | bitrd | |- ( ph -> ( A C_ C <-> B C_ D ) ) |