Description: Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uneq1d.1 | |- ( ph -> A = B ) |
|
| uneq12d.2 | |- ( ph -> C = D ) |
||
| Assertion | uneq12d | |- ( ph -> ( A u. C ) = ( B u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | |- ( ph -> A = B ) |
|
| 2 | uneq12d.2 | |- ( ph -> C = D ) |
|
| 3 | uneq12 | |- ( ( A = B /\ C = D ) -> ( A u. C ) = ( B u. D ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A u. C ) = ( B u. D ) ) |