Metamath Proof Explorer


Theorem uneq12d

Description: Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Hypotheses uneq1d.1 φA=B
uneq12d.2 φC=D
Assertion uneq12d φAC=BD

Proof

Step Hyp Ref Expression
1 uneq1d.1 φA=B
2 uneq12d.2 φC=D
3 uneq12 A=BC=DAC=BD
4 1 2 3 syl2anc φAC=BD