Description: The domain of a set is a set. Corollary 6.8(2) of TakeutiZaring p. 26. (Contributed by NM, 7-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmexg | |- ( A e. V -> dom A e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uniexg | |- ( A e. V -> U. A e. _V ) | |
| 2 | uniexg | |- ( U. A e. _V -> U. U. A e. _V ) | |
| 3 | ssun1 | |- dom A C_ ( dom A u. ran A ) | |
| 4 | dmrnssfld | |- ( dom A u. ran A ) C_ U. U. A | |
| 5 | 3 4 | sstri | |- dom A C_ U. U. A | 
| 6 | ssexg | |- ( ( dom A C_ U. U. A /\ U. U. A e. _V ) -> dom A e. _V ) | |
| 7 | 5 6 | mpan | |- ( U. U. A e. _V -> dom A e. _V ) | 
| 8 | 1 2 7 | 3syl | |- ( A e. V -> dom A e. _V ) |