Metamath Proof Explorer


Theorem dmexg

Description: The domain of a set is a set. Corollary 6.8(2) of TakeutiZaring p. 26. (Contributed by NM, 7-Apr-1995)

Ref Expression
Assertion dmexg
|- ( A e. V -> dom A e. _V )

Proof

Step Hyp Ref Expression
1 uniexg
 |-  ( A e. V -> U. A e. _V )
2 uniexg
 |-  ( U. A e. _V -> U. U. A e. _V )
3 ssun1
 |-  dom A C_ ( dom A u. ran A )
4 dmrnssfld
 |-  ( dom A u. ran A ) C_ U. U. A
5 3 4 sstri
 |-  dom A C_ U. U. A
6 ssexg
 |-  ( ( dom A C_ U. U. A /\ U. U. A e. _V ) -> dom A e. _V )
7 5 6 mpan
 |-  ( U. U. A e. _V -> dom A e. _V )
8 1 2 7 3syl
 |-  ( A e. V -> dom A e. _V )