Description: The domain of a set is a set. Corollary 6.8(2) of TakeutiZaring p. 26. (Contributed by NM, 7-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | dmexg | |- ( A e. V -> dom A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg | |- ( A e. V -> U. A e. _V ) |
|
2 | uniexg | |- ( U. A e. _V -> U. U. A e. _V ) |
|
3 | ssun1 | |- dom A C_ ( dom A u. ran A ) |
|
4 | dmrnssfld | |- ( dom A u. ran A ) C_ U. U. A |
|
5 | 3 4 | sstri | |- dom A C_ U. U. A |
6 | ssexg | |- ( ( dom A C_ U. U. A /\ U. U. A e. _V ) -> dom A e. _V ) |
|
7 | 5 6 | mpan | |- ( U. U. A e. _V -> dom A e. _V ) |
8 | 1 2 7 | 3syl | |- ( A e. V -> dom A e. _V ) |