Metamath Proof Explorer


Theorem rtrclexlem

Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion rtrclexlem ( 𝑅𝑉 → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V )

Proof

Step Hyp Ref Expression
1 dmexg ( 𝑅𝑉 → dom 𝑅 ∈ V )
2 rnexg ( 𝑅𝑉 → ran 𝑅 ∈ V )
3 unexg ( ( dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V )
4 1 2 3 syl2anc ( 𝑅𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V )
5 sqxpexg ( ( dom 𝑅 ∪ ran 𝑅 ) ∈ V → ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V )
6 4 5 syl ( 𝑅𝑉 → ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V )
7 unexg ( ( 𝑅𝑉 ∧ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V )
8 6 7 mpdan ( 𝑅𝑉 → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V )