Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rtrclexlem | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg | ⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) | |
2 | rnexg | ⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) | |
3 | 1 2 | unexd | ⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
4 | sqxpexg | ⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) ∈ V → ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) | |
5 | 3 4 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
6 | unexg | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V ) | |
7 | 5 6 | mpdan | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V ) |