Step |
Hyp |
Ref |
Expression |
1 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
2 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) |
3 |
|
unexg |
⊢ ( ( dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V ) → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 ∪ ran 𝑅 ) ∈ V ) |
5 |
|
sqxpexg |
⊢ ( ( dom 𝑅 ∪ ran 𝑅 ) ∈ V → ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
6 |
4 5
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) |
7 |
|
unexg |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ∈ V ) → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V ) |
8 |
6 7
|
mpdan |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∪ ( ( dom 𝑅 ∪ ran 𝑅 ) × ( dom 𝑅 ∪ ran 𝑅 ) ) ) ∈ V ) |