Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | unss12 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) | |
2 | unss2 | ⊢ ( 𝐶 ⊆ 𝐷 → ( 𝐵 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐷 ) ) | |
3 | 1 2 | sylan9ss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐷 ) ) |