Metamath Proof Explorer


Theorem unss12

Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004)

Ref Expression
Assertion unss12 ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 unss1 ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
2 unss2 ( 𝐶𝐷 → ( 𝐵𝐶 ) ⊆ ( 𝐵𝐷 ) )
3 1 2 sylan9ss ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐷 ) )