Metamath Proof Explorer
		
		
		
		Description:  A subclass transitivity deduction.  (Contributed by NM, 27-Sep-2004)
       (Proof shortened by Andrew Salmon, 14-Jun-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sylan9ss.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
					
						|  |  | sylan9ss.2 | ⊢ ( 𝜓  →  𝐵  ⊆  𝐶 ) | 
				
					|  | Assertion | sylan9ss | ⊢  ( ( 𝜑  ∧  𝜓 )  →  𝐴  ⊆  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylan9ss.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | sylan9ss.2 | ⊢ ( 𝜓  →  𝐵  ⊆  𝐶 ) | 
						
							| 3 |  | sstr | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐶 )  →  𝐴  ⊆  𝐶 ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐴  ⊆  𝐶 ) |